Whakaoti mō x
x=\frac{2\sqrt{60186}}{15}-10\approx 22.710446853
x=-\frac{2\sqrt{60186}}{15}-10\approx -42.710446853
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.75x^{2}+15x-727.48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-15±\sqrt{15^{2}-4\times 0.75\left(-727.48\right)}}{2\times 0.75}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.75 mō a, 15 mō b, me -727.48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 0.75\left(-727.48\right)}}{2\times 0.75}
Pūrua 15.
x=\frac{-15±\sqrt{225-3\left(-727.48\right)}}{2\times 0.75}
Whakareatia -4 ki te 0.75.
x=\frac{-15±\sqrt{225+2182.44}}{2\times 0.75}
Whakareatia -3 ki te -727.48.
x=\frac{-15±\sqrt{2407.44}}{2\times 0.75}
Tāpiri 225 ki te 2182.44.
x=\frac{-15±\frac{\sqrt{60186}}{5}}{2\times 0.75}
Tuhia te pūtakerua o te 2407.44.
x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5}
Whakareatia 2 ki te 0.75.
x=\frac{\frac{\sqrt{60186}}{5}-15}{1.5}
Nā, me whakaoti te whārite x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5} ina he tāpiri te ±. Tāpiri -15 ki te \frac{\sqrt{60186}}{5}.
x=\frac{2\sqrt{60186}}{15}-10
Whakawehe -15+\frac{\sqrt{60186}}{5} ki te 1.5 mā te whakarea -15+\frac{\sqrt{60186}}{5} ki te tau huripoki o 1.5.
x=\frac{-\frac{\sqrt{60186}}{5}-15}{1.5}
Nā, me whakaoti te whārite x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5} ina he tango te ±. Tango \frac{\sqrt{60186}}{5} mai i -15.
x=-\frac{2\sqrt{60186}}{15}-10
Whakawehe -15-\frac{\sqrt{60186}}{5} ki te 1.5 mā te whakarea -15-\frac{\sqrt{60186}}{5} ki te tau huripoki o 1.5.
x=\frac{2\sqrt{60186}}{15}-10 x=-\frac{2\sqrt{60186}}{15}-10
Kua oti te whārite te whakatau.
0.75x^{2}+15x-727.48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
0.75x^{2}+15x-727.48-\left(-727.48\right)=-\left(-727.48\right)
Me tāpiri 727.48 ki ngā taha e rua o te whārite.
0.75x^{2}+15x=-\left(-727.48\right)
Mā te tango i te -727.48 i a ia ake anō ka toe ko te 0.
0.75x^{2}+15x=727.48
Tango -727.48 mai i 0.
\frac{0.75x^{2}+15x}{0.75}=\frac{727.48}{0.75}
Whakawehea ngā taha e rua o te whārite ki te 0.75, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{15}{0.75}x=\frac{727.48}{0.75}
Mā te whakawehe ki te 0.75 ka wetekia te whakareanga ki te 0.75.
x^{2}+20x=\frac{727.48}{0.75}
Whakawehe 15 ki te 0.75 mā te whakarea 15 ki te tau huripoki o 0.75.
x^{2}+20x=\frac{72748}{75}
Whakawehe 727.48 ki te 0.75 mā te whakarea 727.48 ki te tau huripoki o 0.75.
x^{2}+20x+10^{2}=\frac{72748}{75}+10^{2}
Whakawehea te 20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 10. Nā, tāpiria te pūrua o te 10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+20x+100=\frac{72748}{75}+100
Pūrua 10.
x^{2}+20x+100=\frac{80248}{75}
Tāpiri \frac{72748}{75} ki te 100.
\left(x+10\right)^{2}=\frac{80248}{75}
Tauwehea x^{2}+20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{\frac{80248}{75}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+10=\frac{2\sqrt{60186}}{15} x+10=-\frac{2\sqrt{60186}}{15}
Whakarūnātia.
x=\frac{2\sqrt{60186}}{15}-10 x=-\frac{2\sqrt{60186}}{15}-10
Me tango 10 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}