Aromātai
1.1115
Tauwehe
\frac{13 \cdot 19 \cdot 3 ^ {2}}{2 ^ {4} \cdot 5 ^ {3}} = 1\frac{223}{2000} = 1.1115
Tohaina
Kua tāruatia ki te papatopenga
0.72-\frac{-405}{-3000}\left(-2.9\right)
Whakarohaina te \frac{-0.0405}{-0.3} mā te whakarea i te taurunga me te tauraro ki te 10000.
0.72-\frac{27}{200}\left(-2.9\right)
Whakahekea te hautanga \frac{-405}{-3000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -15.
0.72-\frac{27}{200}\left(-\frac{29}{10}\right)
Me tahuri ki tau ā-ira -2.9 ki te hautau -\frac{29}{10}.
0.72-\frac{27\left(-29\right)}{200\times 10}
Me whakarea te \frac{27}{200} ki te -\frac{29}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0.72-\frac{-783}{2000}
Mahia ngā whakarea i roto i te hautanga \frac{27\left(-29\right)}{200\times 10}.
0.72-\left(-\frac{783}{2000}\right)
Ka taea te hautanga \frac{-783}{2000} te tuhi anō ko -\frac{783}{2000} mā te tango i te tohu tōraro.
0.72+\frac{783}{2000}
Ko te tauaro o -\frac{783}{2000} ko \frac{783}{2000}.
\frac{18}{25}+\frac{783}{2000}
Me tahuri ki tau ā-ira 0.72 ki te hautau \frac{72}{100}. Whakahekea te hautanga \frac{72}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{1440}{2000}+\frac{783}{2000}
Ko te maha noa iti rawa atu o 25 me 2000 ko 2000. Me tahuri \frac{18}{25} me \frac{783}{2000} ki te hautau me te tautūnga 2000.
\frac{1440+783}{2000}
Tā te mea he rite te tauraro o \frac{1440}{2000} me \frac{783}{2000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2223}{2000}
Tāpirihia te 1440 ki te 783, ka 2223.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}