Whakaoti mō t
t=-0.51
t=0.6
Tohaina
Kua tāruatia ki te papatopenga
0.6t-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-2.04
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
0.6t-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-2.04
Whakareatia te 5 ki te \frac{160}{3}, ka \frac{800}{3}.
0.6t-\frac{\frac{800}{3}}{4\times 10}t^{2}=-2.04
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
0.6t-\frac{\frac{800}{3}}{40}t^{2}=-2.04
Whakareatia te 4 ki te 10, ka 40.
0.6t-\frac{800}{3\times 40}t^{2}=-2.04
Tuhia te \frac{\frac{800}{3}}{40} hei hautanga kotahi.
0.6t-\frac{800}{120}t^{2}=-2.04
Whakareatia te 3 ki te 40, ka 120.
0.6t-\frac{20}{3}t^{2}=-2.04
Whakahekea te hautanga \frac{800}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
0.6t-\frac{20}{3}t^{2}+2.04=0
Me tāpiri te 2.04 ki ngā taha e rua.
-\frac{20}{3}t^{2}+\frac{3}{5}t+2.04=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\frac{3}{5}±\sqrt{\left(\frac{3}{5}\right)^{2}-4\left(-\frac{20}{3}\right)\times 2.04}}{2\left(-\frac{20}{3}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{20}{3} mō a, \frac{3}{5} mō b, me 2.04 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}-4\left(-\frac{20}{3}\right)\times 2.04}}{2\left(-\frac{20}{3}\right)}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}+\frac{80}{3}\times 2.04}}{2\left(-\frac{20}{3}\right)}
Whakareatia -4 ki te -\frac{20}{3}.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}+\frac{272}{5}}}{2\left(-\frac{20}{3}\right)}
Whakareatia \frac{80}{3} ki te 2.04 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=\frac{-\frac{3}{5}±\sqrt{\frac{1369}{25}}}{2\left(-\frac{20}{3}\right)}
Tāpiri \frac{9}{25} ki te \frac{272}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=\frac{-\frac{3}{5}±\frac{37}{5}}{2\left(-\frac{20}{3}\right)}
Tuhia te pūtakerua o te \frac{1369}{25}.
t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}}
Whakareatia 2 ki te -\frac{20}{3}.
t=\frac{\frac{34}{5}}{-\frac{40}{3}}
Nā, me whakaoti te whārite t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}} ina he tāpiri te ±. Tāpiri -\frac{3}{5} ki te \frac{37}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=-\frac{51}{100}
Whakawehe \frac{34}{5} ki te -\frac{40}{3} mā te whakarea \frac{34}{5} ki te tau huripoki o -\frac{40}{3}.
t=-\frac{8}{-\frac{40}{3}}
Nā, me whakaoti te whārite t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}} ina he tango te ±. Tango \frac{37}{5} mai i -\frac{3}{5} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=\frac{3}{5}
Whakawehe -8 ki te -\frac{40}{3} mā te whakarea -8 ki te tau huripoki o -\frac{40}{3}.
t=-\frac{51}{100} t=\frac{3}{5}
Kua oti te whārite te whakatau.
0.6t-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-2.04
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
0.6t-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-2.04
Whakareatia te 5 ki te \frac{160}{3}, ka \frac{800}{3}.
0.6t-\frac{\frac{800}{3}}{4\times 10}t^{2}=-2.04
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
0.6t-\frac{\frac{800}{3}}{40}t^{2}=-2.04
Whakareatia te 4 ki te 10, ka 40.
0.6t-\frac{800}{3\times 40}t^{2}=-2.04
Tuhia te \frac{\frac{800}{3}}{40} hei hautanga kotahi.
0.6t-\frac{800}{120}t^{2}=-2.04
Whakareatia te 3 ki te 40, ka 120.
0.6t-\frac{20}{3}t^{2}=-2.04
Whakahekea te hautanga \frac{800}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
-\frac{20}{3}t^{2}+\frac{3}{5}t=-2.04
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{20}{3}t^{2}+\frac{3}{5}t}{-\frac{20}{3}}=-\frac{2.04}{-\frac{20}{3}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{20}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t^{2}+\frac{\frac{3}{5}}{-\frac{20}{3}}t=-\frac{2.04}{-\frac{20}{3}}
Mā te whakawehe ki te -\frac{20}{3} ka wetekia te whakareanga ki te -\frac{20}{3}.
t^{2}-\frac{9}{100}t=-\frac{2.04}{-\frac{20}{3}}
Whakawehe \frac{3}{5} ki te -\frac{20}{3} mā te whakarea \frac{3}{5} ki te tau huripoki o -\frac{20}{3}.
t^{2}-\frac{9}{100}t=\frac{153}{500}
Whakawehe -2.04 ki te -\frac{20}{3} mā te whakarea -2.04 ki te tau huripoki o -\frac{20}{3}.
t^{2}-\frac{9}{100}t+\left(-\frac{9}{200}\right)^{2}=\frac{153}{500}+\left(-\frac{9}{200}\right)^{2}
Whakawehea te -\frac{9}{100}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{200}. Nā, tāpiria te pūrua o te -\frac{9}{200} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{9}{100}t+\frac{81}{40000}=\frac{153}{500}+\frac{81}{40000}
Pūruatia -\frac{9}{200} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{9}{100}t+\frac{81}{40000}=\frac{12321}{40000}
Tāpiri \frac{153}{500} ki te \frac{81}{40000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{9}{200}\right)^{2}=\frac{12321}{40000}
Tauwehea t^{2}-\frac{9}{100}t+\frac{81}{40000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{9}{200}\right)^{2}}=\sqrt{\frac{12321}{40000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{9}{200}=\frac{111}{200} t-\frac{9}{200}=-\frac{111}{200}
Whakarūnātia.
t=\frac{3}{5} t=-\frac{51}{100}
Me tāpiri \frac{9}{200} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}