Whakaoti mō D
D=\frac{20}{c}
c\neq 0
Whakaoti mō c
c=\frac{20}{D}
D\neq 0
Tohaina
Kua tāruatia ki te papatopenga
0.6Dc=12
Tē taea kia ōrite te tāupe D ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te Dc.
Dc=\frac{12}{0.6}
Whakawehea ngā taha e rua ki te 0.6.
Dc=\frac{120}{6}
Whakarohaina te \frac{12}{0.6} mā te whakarea i te taurunga me te tauraro ki te 10.
Dc=20
Whakawehea te 120 ki te 6, kia riro ko 20.
cD=20
He hanga arowhānui tō te whārite.
\frac{cD}{c}=\frac{20}{c}
Whakawehea ngā taha e rua ki te c.
D=\frac{20}{c}
Mā te whakawehe ki te c ka wetekia te whakareanga ki te c.
D=\frac{20}{c}\text{, }D\neq 0
Tē taea kia ōrite te tāupe D ki 0.
0.6Dc=12
Tē taea kia ōrite te tāupe c ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te Dc.
Dc=\frac{12}{0.6}
Whakawehea ngā taha e rua ki te 0.6.
Dc=\frac{120}{6}
Whakarohaina te \frac{12}{0.6} mā te whakarea i te taurunga me te tauraro ki te 10.
Dc=20
Whakawehea te 120 ki te 6, kia riro ko 20.
\frac{Dc}{D}=\frac{20}{D}
Whakawehea ngā taha e rua ki te D.
c=\frac{20}{D}
Mā te whakawehe ki te D ka wetekia te whakareanga ki te D.
c=\frac{20}{D}\text{, }c\neq 0
Tē taea kia ōrite te tāupe c ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}