Whakaoti mō x
x=200-20z-10y
Whakaoti mō y
y=-\frac{x}{10}-2z+20
Tohaina
Kua tāruatia ki te papatopenga
0.5x+10z=100-5y
Tangohia te 5y mai i ngā taha e rua.
0.5x=100-5y-10z
Tangohia te 10z mai i ngā taha e rua.
0.5x=100-10z-5y
He hanga arowhānui tō te whārite.
\frac{0.5x}{0.5}=\frac{100-10z-5y}{0.5}
Me whakarea ngā taha e rua ki te 2.
x=\frac{100-10z-5y}{0.5}
Mā te whakawehe ki te 0.5 ka wetekia te whakareanga ki te 0.5.
x=200-20z-10y
Whakawehe 100-5y-10z ki te 0.5 mā te whakarea 100-5y-10z ki te tau huripoki o 0.5.
5y+10z=100-0.5x
Tangohia te 0.5x mai i ngā taha e rua.
5y=100-0.5x-10z
Tangohia te 10z mai i ngā taha e rua.
5y=-\frac{x}{2}-10z+100
He hanga arowhānui tō te whārite.
\frac{5y}{5}=\frac{-\frac{x}{2}-10z+100}{5}
Whakawehea ngā taha e rua ki te 5.
y=\frac{-\frac{x}{2}-10z+100}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
y=-\frac{x}{10}-2z+20
Whakawehe 100-\frac{x}{2}-10z ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}