Aromātai
0.548
Tauwehe
\frac{137}{2 \cdot 5 ^ {3}} = 0.548
Tohaina
Kua tāruatia ki te papatopenga
0.548+1.96\times \frac{\sqrt{0\times 0\times 452}}{\sqrt{338}}
Whakareatia te 0 ki te 548, ka 0.
0.548+1.96\times \frac{\sqrt{0\times 452}}{\sqrt{338}}
Whakareatia te 0 ki te 0, ka 0.
0.548+1.96\times \frac{\sqrt{0}}{\sqrt{338}}
Whakareatia te 0 ki te 452, ka 0.
0.548+1.96\times \frac{0}{\sqrt{338}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0.548+1.96\times \frac{0}{13\sqrt{2}}
Tauwehea te 338=13^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{13^{2}\times 2} hei hua o ngā pūtake rua \sqrt{13^{2}}\sqrt{2}. Tuhia te pūtakerua o te 13^{2}.
0.548+1.96\times 0
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.
0.548+0
Whakareatia te 1.96 ki te 0, ka 0.
0.548
Tāpirihia te 0.548 ki te 0, ka 0.548.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}