Whakaoti mō x
x=2\sqrt{5}-4\approx 0.472135955
x=-2\sqrt{5}-4\approx -8.472135955
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x^{2}+4x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, 4 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Pūrua 4.
x=\frac{-4±\sqrt{16-2\left(-2\right)}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-4±\sqrt{16+4}}{2\times \frac{1}{2}}
Whakareatia -2 ki te -2.
x=\frac{-4±\sqrt{20}}{2\times \frac{1}{2}}
Tāpiri 16 ki te 4.
x=\frac{-4±2\sqrt{5}}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 20.
x=\frac{-4±2\sqrt{5}}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{2\sqrt{5}-4}{1}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{5}}{1} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{5}.
x=2\sqrt{5}-4
Whakawehe -4+2\sqrt{5} ki te 1.
x=\frac{-2\sqrt{5}-4}{1}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{5}}{1} ina he tango te ±. Tango 2\sqrt{5} mai i -4.
x=-2\sqrt{5}-4
Whakawehe -4-2\sqrt{5} ki te 1.
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}+4x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{2}x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
\frac{1}{2}x^{2}+4x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
\frac{1}{2}x^{2}+4x=2
Tango -2 mai i 0.
\frac{\frac{1}{2}x^{2}+4x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\frac{4}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}+8x=\frac{2}{\frac{1}{2}}
Whakawehe 4 ki te \frac{1}{2} mā te whakarea 4 ki te tau huripoki o \frac{1}{2}.
x^{2}+8x=4
Whakawehe 2 ki te \frac{1}{2} mā te whakarea 2 ki te tau huripoki o \frac{1}{2}.
x^{2}+8x+4^{2}=4+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=4+16
Pūrua 4.
x^{2}+8x+16=20
Tāpiri 4 ki te 16.
\left(x+4\right)^{2}=20
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{20}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=2\sqrt{5} x+4=-2\sqrt{5}
Whakarūnātia.
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}