Aromātai
\frac{\sqrt{186}}{5}\approx 2.727636339
Tohaina
Kua tāruatia ki te papatopenga
0.5\sqrt{\frac{1}{25}+\frac{1}{6}}\sqrt{144}
Me tahuri ki tau ā-ira 0.04 ki te hautau \frac{4}{100}. Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
0.5\sqrt{\frac{6}{150}+\frac{25}{150}}\sqrt{144}
Ko te maha noa iti rawa atu o 25 me 6 ko 150. Me tahuri \frac{1}{25} me \frac{1}{6} ki te hautau me te tautūnga 150.
0.5\sqrt{\frac{6+25}{150}}\sqrt{144}
Tā te mea he rite te tauraro o \frac{6}{150} me \frac{25}{150}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0.5\sqrt{\frac{31}{150}}\sqrt{144}
Tāpirihia te 6 ki te 25, ka 31.
0.5\times \frac{\sqrt{31}}{\sqrt{150}}\sqrt{144}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{31}{150}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{31}}{\sqrt{150}}.
0.5\times \frac{\sqrt{31}}{5\sqrt{6}}\sqrt{144}
Tauwehea te 150=5^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 6} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{6}. Tuhia te pūtakerua o te 5^{2}.
0.5\times \frac{\sqrt{31}\sqrt{6}}{5\left(\sqrt{6}\right)^{2}}\sqrt{144}
Whakangāwaritia te tauraro o \frac{\sqrt{31}}{5\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
0.5\times \frac{\sqrt{31}\sqrt{6}}{5\times 6}\sqrt{144}
Ko te pūrua o \sqrt{6} ko 6.
0.5\times \frac{\sqrt{186}}{5\times 6}\sqrt{144}
Hei whakarea \sqrt{31} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
0.5\times \frac{\sqrt{186}}{30}\sqrt{144}
Whakareatia te 5 ki te 6, ka 30.
0.5\times \frac{\sqrt{186}}{30}\times 12
Tātaitia te pūtakerua o 144 kia tae ki 12.
6\times \frac{\sqrt{186}}{30}
Whakareatia te 0.5 ki te 12, ka 6.
\frac{\sqrt{186}}{5}
Whakakorea atu te tauwehe pūnoa nui rawa 30 i roto i te 6 me te 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}