Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{0.35}{1}=0.5^{\frac{t}{15.05}}
Whakawehea ngā taha e rua ki te 1.
\frac{35}{100}=0.5^{\frac{t}{15.05}}
Whakarohaina te \frac{0.35}{1} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{7}{20}=0.5^{\frac{t}{15.05}}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0.5^{\frac{t}{15.05}}=\frac{7}{20}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0.5^{\frac{20}{301}t}=0.35
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(0.5^{\frac{20}{301}t})=\log(0.35)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\frac{20}{301}t\log(0.5)=\log(0.35)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
\frac{20}{301}t=\frac{\log(0.35)}{\log(0.5)}
Whakawehea ngā taha e rua ki te \log(0.5).
\frac{20}{301}t=\log_{0.5}\left(0.35\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=-\frac{\frac{\ln(\frac{7}{20})}{\ln(2)}}{\frac{20}{301}}
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{301}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.