Whakaoti mō t
t=\frac{301\log_{2}\left(\frac{5}{7}\right)}{20}+30.1\approx 22.794326251
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.35}{1}=0.5^{\frac{t}{15.05}}
Whakawehea ngā taha e rua ki te 1.
\frac{35}{100}=0.5^{\frac{t}{15.05}}
Whakarohaina te \frac{0.35}{1} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{7}{20}=0.5^{\frac{t}{15.05}}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0.5^{\frac{t}{15.05}}=\frac{7}{20}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0.5^{\frac{20}{301}t}=0.35
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(0.5^{\frac{20}{301}t})=\log(0.35)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\frac{20}{301}t\log(0.5)=\log(0.35)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
\frac{20}{301}t=\frac{\log(0.35)}{\log(0.5)}
Whakawehea ngā taha e rua ki te \log(0.5).
\frac{20}{301}t=\log_{0.5}\left(0.35\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=-\frac{\frac{\ln(\frac{7}{20})}{\ln(2)}}{\frac{20}{301}}
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{301}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}