Aromātai
-\frac{50721}{14000}\approx -3.622928571
Tauwehe
-\frac{50721}{14000} = -3\frac{8721}{14000} = -3.6229285714285715
Tohaina
Kua tāruatia ki te papatopenga
0.3\left(\frac{239}{280}-18.81+5.88\right)
Whakarohaina te \frac{23.9}{28} mā te whakarea i te taurunga me te tauraro ki te 10.
0.3\left(\frac{239}{280}-\frac{1881}{100}+5.88\right)
Me tahuri ki tau ā-ira 18.81 ki te hautau \frac{1881}{100}.
0.3\left(\frac{1195}{1400}-\frac{26334}{1400}+5.88\right)
Ko te maha noa iti rawa atu o 280 me 100 ko 1400. Me tahuri \frac{239}{280} me \frac{1881}{100} ki te hautau me te tautūnga 1400.
0.3\left(\frac{1195-26334}{1400}+5.88\right)
Tā te mea he rite te tauraro o \frac{1195}{1400} me \frac{26334}{1400}, me tango rāua mā te tango i ō raua taurunga.
0.3\left(-\frac{25139}{1400}+5.88\right)
Tangohia te 26334 i te 1195, ka -25139.
0.3\left(-\frac{25139}{1400}+\frac{147}{25}\right)
Me tahuri ki tau ā-ira 5.88 ki te hautau \frac{588}{100}. Whakahekea te hautanga \frac{588}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
0.3\left(-\frac{25139}{1400}+\frac{8232}{1400}\right)
Ko te maha noa iti rawa atu o 1400 me 25 ko 1400. Me tahuri -\frac{25139}{1400} me \frac{147}{25} ki te hautau me te tautūnga 1400.
0.3\times \frac{-25139+8232}{1400}
Tā te mea he rite te tauraro o -\frac{25139}{1400} me \frac{8232}{1400}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0.3\left(-\frac{16907}{1400}\right)
Tāpirihia te -25139 ki te 8232, ka -16907.
\frac{3}{10}\left(-\frac{16907}{1400}\right)
Me tahuri ki tau ā-ira 0.3 ki te hautau \frac{3}{10}.
\frac{3\left(-16907\right)}{10\times 1400}
Me whakarea te \frac{3}{10} ki te -\frac{16907}{1400} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-50721}{14000}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-16907\right)}{10\times 1400}.
-\frac{50721}{14000}
Ka taea te hautanga \frac{-50721}{14000} te tuhi anō ko -\frac{50721}{14000} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}