Whakaoti mō x
x=2\sqrt{17}+10\approx 18.246211251
x=10-2\sqrt{17}\approx 1.753788749
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.25x^{2}-5x+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 0.25\times 8}}{2\times 0.25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.25 mō a, -5 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 0.25\times 8}}{2\times 0.25}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-8}}{2\times 0.25}
Whakareatia -4 ki te 0.25.
x=\frac{-\left(-5\right)±\sqrt{17}}{2\times 0.25}
Tāpiri 25 ki te -8.
x=\frac{5±\sqrt{17}}{2\times 0.25}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{17}}{0.5}
Whakareatia 2 ki te 0.25.
x=\frac{\sqrt{17}+5}{0.5}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{17}}{0.5} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{17}.
x=2\sqrt{17}+10
Whakawehe 5+\sqrt{17} ki te 0.5 mā te whakarea 5+\sqrt{17} ki te tau huripoki o 0.5.
x=\frac{5-\sqrt{17}}{0.5}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{17}}{0.5} ina he tango te ±. Tango \sqrt{17} mai i 5.
x=10-2\sqrt{17}
Whakawehe 5-\sqrt{17} ki te 0.5 mā te whakarea 5-\sqrt{17} ki te tau huripoki o 0.5.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
Kua oti te whārite te whakatau.
0.25x^{2}-5x+8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
0.25x^{2}-5x+8-8=-8
Me tango 8 mai i ngā taha e rua o te whārite.
0.25x^{2}-5x=-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
\frac{0.25x^{2}-5x}{0.25}=-\frac{8}{0.25}
Me whakarea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{5}{0.25}\right)x=-\frac{8}{0.25}
Mā te whakawehe ki te 0.25 ka wetekia te whakareanga ki te 0.25.
x^{2}-20x=-\frac{8}{0.25}
Whakawehe -5 ki te 0.25 mā te whakarea -5 ki te tau huripoki o 0.25.
x^{2}-20x=-32
Whakawehe -8 ki te 0.25 mā te whakarea -8 ki te tau huripoki o 0.25.
x^{2}-20x+\left(-10\right)^{2}=-32+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-20x+100=-32+100
Pūrua -10.
x^{2}-20x+100=68
Tāpiri -32 ki te 100.
\left(x-10\right)^{2}=68
Tauwehea x^{2}-20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{68}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-10=2\sqrt{17} x-10=-2\sqrt{17}
Whakarūnātia.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
Me tāpiri 10 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}