Aromātai
-\frac{3}{7}\approx -0.428571429
Tauwehe
-\frac{3}{7} = -0.42857142857142855
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
0.25 \div ( \frac { 2 } { 3 } - 1 \frac { 1 } { 4 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.25}{\frac{2}{3}-\frac{4+1}{4}}
Whakareatia te 1 ki te 4, ka 4.
\frac{0.25}{\frac{2}{3}-\frac{5}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{0.25}{\frac{8}{12}-\frac{15}{12}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{0.25}{\frac{8-15}{12}}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{0.25}{-\frac{7}{12}}
Tangohia te 15 i te 8, ka -7.
0.25\left(-\frac{12}{7}\right)
Whakawehe 0.25 ki te -\frac{7}{12} mā te whakarea 0.25 ki te tau huripoki o -\frac{7}{12}.
\frac{1}{4}\left(-\frac{12}{7}\right)
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{1\left(-12\right)}{4\times 7}
Me whakarea te \frac{1}{4} ki te -\frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-12}{28}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-12\right)}{4\times 7}.
-\frac{3}{7}
Whakahekea te hautanga \frac{-12}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}