Whakaoti mō V
V=\frac{gm+A}{4m}
m\neq 0\text{ and }A\neq -gm\text{ and }g\neq -\frac{A}{m}
Whakaoti mō A
A=-m\left(g-4V\right)
V\neq 0\text{ and }m\neq 0
Tohaina
Kua tāruatia ki te papatopenga
0.25=\frac{V}{\frac{gm}{m}+\frac{A}{m}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia g ki te \frac{m}{m}.
0.25=\frac{V}{\frac{gm+A}{m}}
Tā te mea he rite te tauraro o \frac{gm}{m} me \frac{A}{m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0.25=\frac{Vm}{gm+A}
Whakawehe V ki te \frac{gm+A}{m} mā te whakarea V ki te tau huripoki o \frac{gm+A}{m}.
\frac{Vm}{gm+A}=0.25
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
Vm=0.25\left(gm+A\right)
Whakareatia ngā taha e rua o te whārite ki te gm+A.
Vm=0.25gm+0.25A
Whakamahia te āhuatanga tohatoha hei whakarea te 0.25 ki te gm+A.
mV=\frac{gm+A}{4}
He hanga arowhānui tō te whārite.
\frac{mV}{m}=\frac{gm+A}{4m}
Whakawehea ngā taha e rua ki te m.
V=\frac{gm+A}{4m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}