Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
0.21\times \frac{8}{3}+\frac{11}{25}
Whakawehe 0.21 ki te \frac{3}{8} mā te whakarea 0.21 ki te tau huripoki o \frac{3}{8}.
\frac{21}{100}\times \frac{8}{3}+\frac{11}{25}
Me tahuri ki tau ā-ira 0.21 ki te hautau \frac{21}{100}.
\frac{21\times 8}{100\times 3}+\frac{11}{25}
Me whakarea te \frac{21}{100} ki te \frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{168}{300}+\frac{11}{25}
Mahia ngā whakarea i roto i te hautanga \frac{21\times 8}{100\times 3}.
\frac{14}{25}+\frac{11}{25}
Whakahekea te hautanga \frac{168}{300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{14+11}{25}
Tā te mea he rite te tauraro o \frac{14}{25} me \frac{11}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{25}
Tāpirihia te 14 ki te 11, ka 25.
1
Whakawehea te 25 ki te 25, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}