Whakaoti mō s
s = \frac{5 \sqrt{3001} + 255}{2} \approx 264.453459248
s=\frac{255-5\sqrt{3001}}{2}\approx -9.453459248
Tohaina
Kua tāruatia ki te papatopenga
0.2\left(1-\frac{s}{500}\right)\times 500\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Tē taea kia ōrite te tāupe s ki 10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 500\left(s-10\right), arā, te tauraro pātahi he tino iti rawa te kitea o 500,100s-1000.
100\left(1-\frac{s}{500}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te 0.2 ki te 500, ka 100.
\left(100+100\left(-\frac{s}{500}\right)\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 1-\frac{s}{500}.
\left(100+\frac{s}{-5}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 500 i roto i te 100 me te 500.
100s-1000+\frac{s}{-5}s-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 100+\frac{s}{-5} ki te s-10.
100s-1000+\frac{ss}{-5}-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Tuhia te \frac{s}{-5}s hei hautanga kotahi.
100s-1000+\frac{ss}{-5}-2s=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakakorea atu te tauwehe pūnoa nui rawa -5 i roto i te 10 me te -5.
98s-1000+\frac{ss}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Pahekotia te 100s me -2s, ka 98s.
98s-1000+\frac{s^{2}}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te s ki te s, ka s^{2}.
98s-1000+\frac{s^{2}}{-5}=50\left(s-10\right)-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te 500 ki te 0.1, ka 50.
98s-1000+\frac{s^{2}}{-5}=50s-500-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te s-10.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000\left(1-\frac{s}{1000}\right)
Whakareatia te -5 ki te 200, ka -1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000-1000\left(-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -1000 ki te 1-\frac{s}{1000}.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+1000\times \frac{s}{1000}
Whakareatia te -1000 ki te -1, ka 1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+\frac{1000s}{1000}
Tuhia te 1000\times \frac{s}{1000} hei hautanga kotahi.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+s
Me whakakore te 1000 me te 1000.
98s-1000+\frac{s^{2}}{-5}=50s-1500+s
Tangohia te 1000 i te -500, ka -1500.
98s-1000+\frac{s^{2}}{-5}=51s-1500
Pahekotia te 50s me s, ka 51s.
98s-1000+\frac{s^{2}}{-5}-51s=-1500
Tangohia te 51s mai i ngā taha e rua.
47s-1000+\frac{s^{2}}{-5}=-1500
Pahekotia te 98s me -51s, ka 47s.
47s-1000+\frac{s^{2}}{-5}+1500=0
Me tāpiri te 1500 ki ngā taha e rua.
47s+500+\frac{s^{2}}{-5}=0
Tāpirihia te -1000 ki te 1500, ka 500.
-235s-2500+s^{2}=0
Whakareatia ngā taha e rua o te whārite ki te -5.
s^{2}-235s-2500=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-\left(-235\right)±\sqrt{\left(-235\right)^{2}-4\left(-2500\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -235 mō b, me -2500 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-235\right)±\sqrt{55225-4\left(-2500\right)}}{2}
Pūrua -235.
s=\frac{-\left(-235\right)±\sqrt{55225+10000}}{2}
Whakareatia -4 ki te -2500.
s=\frac{-\left(-235\right)±\sqrt{65225}}{2}
Tāpiri 55225 ki te 10000.
s=\frac{-\left(-235\right)±5\sqrt{2609}}{2}
Tuhia te pūtakerua o te 65225.
s=\frac{235±5\sqrt{2609}}{2}
Ko te tauaro o -235 ko 235.
s=\frac{5\sqrt{2609}+235}{2}
Nā, me whakaoti te whārite s=\frac{235±5\sqrt{2609}}{2} ina he tāpiri te ±. Tāpiri 235 ki te 5\sqrt{2609}.
s=\frac{235-5\sqrt{2609}}{2}
Nā, me whakaoti te whārite s=\frac{235±5\sqrt{2609}}{2} ina he tango te ±. Tango 5\sqrt{2609} mai i 235.
s=\frac{5\sqrt{2609}+235}{2} s=\frac{235-5\sqrt{2609}}{2}
Kua oti te whārite te whakatau.
0.2\left(1-\frac{s}{500}\right)\times 500\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Tē taea kia ōrite te tāupe s ki 10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 500\left(s-10\right), arā, te tauraro pātahi he tino iti rawa te kitea o 500,100s-1000.
100\left(1-\frac{s}{500}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te 0.2 ki te 500, ka 100.
\left(100+100\left(-\frac{s}{500}\right)\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 1-\frac{s}{500}.
\left(100+\frac{s}{-5}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 500 i roto i te 100 me te 500.
100s-1000+\frac{s}{-5}s-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 100+\frac{s}{-5} ki te s-10.
100s-1000+\frac{ss}{-5}-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Tuhia te \frac{s}{-5}s hei hautanga kotahi.
100s-1000+\frac{ss}{-5}-2s=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakakorea atu te tauwehe pūnoa nui rawa -5 i roto i te 10 me te -5.
98s-1000+\frac{ss}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Pahekotia te 100s me -2s, ka 98s.
98s-1000+\frac{s^{2}}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te s ki te s, ka s^{2}.
98s-1000+\frac{s^{2}}{-5}=50\left(s-10\right)-5\times 200\left(1-\frac{s}{1000}\right)
Whakareatia te 500 ki te 0.1, ka 50.
98s-1000+\frac{s^{2}}{-5}=50s-500-5\times 200\left(1-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te s-10.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000\left(1-\frac{s}{1000}\right)
Whakareatia te -5 ki te 200, ka -1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000-1000\left(-\frac{s}{1000}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -1000 ki te 1-\frac{s}{1000}.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+1000\times \frac{s}{1000}
Whakareatia te -1000 ki te -1, ka 1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+\frac{1000s}{1000}
Tuhia te 1000\times \frac{s}{1000} hei hautanga kotahi.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+s
Me whakakore te 1000 me te 1000.
98s-1000+\frac{s^{2}}{-5}=50s-1500+s
Tangohia te 1000 i te -500, ka -1500.
98s-1000+\frac{s^{2}}{-5}=51s-1500
Pahekotia te 50s me s, ka 51s.
98s-1000+\frac{s^{2}}{-5}-51s=-1500
Tangohia te 51s mai i ngā taha e rua.
47s-1000+\frac{s^{2}}{-5}=-1500
Pahekotia te 98s me -51s, ka 47s.
47s+\frac{s^{2}}{-5}=-1500+1000
Me tāpiri te 1000 ki ngā taha e rua.
47s+\frac{s^{2}}{-5}=-500
Tāpirihia te -1500 ki te 1000, ka -500.
-235s+s^{2}=2500
Whakareatia ngā taha e rua o te whārite ki te -5.
s^{2}-235s=2500
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
s^{2}-235s+\left(-\frac{235}{2}\right)^{2}=2500+\left(-\frac{235}{2}\right)^{2}
Whakawehea te -235, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{235}{2}. Nā, tāpiria te pūrua o te -\frac{235}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
s^{2}-235s+\frac{55225}{4}=2500+\frac{55225}{4}
Pūruatia -\frac{235}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
s^{2}-235s+\frac{55225}{4}=\frac{65225}{4}
Tāpiri 2500 ki te \frac{55225}{4}.
\left(s-\frac{235}{2}\right)^{2}=\frac{65225}{4}
Tauwehea s^{2}-235s+\frac{55225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{235}{2}\right)^{2}}=\sqrt{\frac{65225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s-\frac{235}{2}=\frac{5\sqrt{2609}}{2} s-\frac{235}{2}=-\frac{5\sqrt{2609}}{2}
Whakarūnātia.
s=\frac{5\sqrt{2609}+235}{2} s=\frac{235-5\sqrt{2609}}{2}
Me tāpiri \frac{235}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}