Aromātai
-2.56
Tauwehe
-2.56
Tohaina
Kua tāruatia ki te papatopenga
\frac{3.8+9}{19}\left(4.22-\frac{28.07}{3.5}\right)
Whakareatia te 0.2 ki te 19, ka 3.8.
\frac{12.8}{19}\left(4.22-\frac{28.07}{3.5}\right)
Tāpirihia te 3.8 ki te 9, ka 12.8.
\frac{128}{190}\left(4.22-\frac{28.07}{3.5}\right)
Whakarohaina te \frac{12.8}{19} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{64}{95}\left(4.22-\frac{28.07}{3.5}\right)
Whakahekea te hautanga \frac{128}{190} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{64}{95}\left(4.22-\frac{2807}{350}\right)
Whakarohaina te \frac{28.07}{3.5} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{64}{95}\left(4.22-\frac{401}{50}\right)
Whakahekea te hautanga \frac{2807}{350} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{64}{95}\left(\frac{211}{50}-\frac{401}{50}\right)
Me tahuri ki tau ā-ira 4.22 ki te hautau \frac{422}{100}. Whakahekea te hautanga \frac{422}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{64}{95}\times \frac{211-401}{50}
Tā te mea he rite te tauraro o \frac{211}{50} me \frac{401}{50}, me tango rāua mā te tango i ō raua taurunga.
\frac{64}{95}\times \frac{-190}{50}
Tangohia te 401 i te 211, ka -190.
\frac{64}{95}\left(-\frac{19}{5}\right)
Whakahekea te hautanga \frac{-190}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{64\left(-19\right)}{95\times 5}
Me whakarea te \frac{64}{95} ki te -\frac{19}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1216}{475}
Mahia ngā whakarea i roto i te hautanga \frac{64\left(-19\right)}{95\times 5}.
-\frac{64}{25}
Whakahekea te hautanga \frac{-1216}{475} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}