Whakaoti mō R
R=5
Tohaina
Kua tāruatia ki te papatopenga
0.14R+2.1=0.2\left(R+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 0.14 ki te R+15.
0.14R+2.1=0.2R+1.8
Whakamahia te āhuatanga tohatoha hei whakarea te 0.2 ki te R+9.
0.14R+2.1-0.2R=1.8
Tangohia te 0.2R mai i ngā taha e rua.
-0.06R+2.1=1.8
Pahekotia te 0.14R me -0.2R, ka -0.06R.
-0.06R=1.8-2.1
Tangohia te 2.1 mai i ngā taha e rua.
-0.06R=-0.3
Tangohia te 2.1 i te 1.8, ka -0.3.
R=\frac{-0.3}{-0.06}
Whakawehea ngā taha e rua ki te -0.06.
R=\frac{-30}{-6}
Whakarohaina te \frac{-0.3}{-0.06} mā te whakarea i te taurunga me te tauraro ki te 100.
R=5
Whakawehea te -30 ki te -6, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}