Whakaoti mō y
y=-2.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.12y-0.96+0.16y=0.18y-0.03\times 40
Whakamahia te āhuatanga tohatoha hei whakarea te 0.12 ki te y-8.
0.28y-0.96=0.18y-0.03\times 40
Pahekotia te 0.12y me 0.16y, ka 0.28y.
0.28y-0.96=0.18y-1.2
Whakareatia te 0.03 ki te 40, ka 1.2.
0.28y-0.96-0.18y=-1.2
Tangohia te 0.18y mai i ngā taha e rua.
0.1y-0.96=-1.2
Pahekotia te 0.28y me -0.18y, ka 0.1y.
0.1y=-1.2+0.96
Me tāpiri te 0.96 ki ngā taha e rua.
0.1y=-0.24
Tāpirihia te -1.2 ki te 0.96, ka -0.24.
y=\frac{-0.24}{0.1}
Whakawehea ngā taha e rua ki te 0.1.
y=\frac{-24}{10}
Whakarohaina te \frac{-0.24}{0.1} mā te whakarea i te taurunga me te tauraro ki te 100.
y=-\frac{12}{5}
Whakahekea te hautanga \frac{-24}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}