Whakaoti mō x
x=-3
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(0.1x+0.3\right)=0
Tauwehea te x.
x=0 x=-3
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{x+3}{10}=0.
0.1x^{2}+0.3x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-0.3±\sqrt{0.3^{2}}}{2\times 0.1}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.1 mō a, 0.3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.3±\frac{3}{10}}{2\times 0.1}
Tuhia te pūtakerua o te 0.3^{2}.
x=\frac{-0.3±\frac{3}{10}}{0.2}
Whakareatia 2 ki te 0.1.
x=\frac{0}{0.2}
Nā, me whakaoti te whārite x=\frac{-0.3±\frac{3}{10}}{0.2} ina he tāpiri te ±. Tāpiri -0.3 ki te \frac{3}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te 0.2 mā te whakarea 0 ki te tau huripoki o 0.2.
x=-\frac{\frac{3}{5}}{0.2}
Nā, me whakaoti te whārite x=\frac{-0.3±\frac{3}{10}}{0.2} ina he tango te ±. Tango \frac{3}{10} mai i -0.3 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3
Whakawehe -\frac{3}{5} ki te 0.2 mā te whakarea -\frac{3}{5} ki te tau huripoki o 0.2.
x=0 x=-3
Kua oti te whārite te whakatau.
0.1x^{2}+0.3x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{0.1x^{2}+0.3x}{0.1}=\frac{0}{0.1}
Me whakarea ngā taha e rua ki te 10.
x^{2}+\frac{0.3}{0.1}x=\frac{0}{0.1}
Mā te whakawehe ki te 0.1 ka wetekia te whakareanga ki te 0.1.
x^{2}+3x=\frac{0}{0.1}
Whakawehe 0.3 ki te 0.1 mā te whakarea 0.3 ki te tau huripoki o 0.1.
x^{2}+3x=0
Whakawehe 0 ki te 0.1 mā te whakarea 0 ki te tau huripoki o 0.1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=0 x=-3
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}