Whakaoti mō x
x=-30
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.09\left(x+30\right)\left(x+50\right)=\left(0.3\left(x+30\right)\right)^{2}
Tē taea kia ōrite te tāupe x ki -50 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+50.
\left(0.09x+2.7\right)\left(x+50\right)=\left(0.3\left(x+30\right)\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 0.09 ki te x+30.
0.09x^{2}+7.2x+135=\left(0.3\left(x+30\right)\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 0.09x+2.7 ki te x+50 ka whakakotahi i ngā kupu rite.
0.09x^{2}+7.2x+135=\left(0.3x+9\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 0.3 ki te x+30.
0.09x^{2}+7.2x+135=0.09x^{2}+5.4x+81
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(0.3x+9\right)^{2}.
0.09x^{2}+7.2x+135-0.09x^{2}=5.4x+81
Tangohia te 0.09x^{2} mai i ngā taha e rua.
7.2x+135=5.4x+81
Pahekotia te 0.09x^{2} me -0.09x^{2}, ka 0.
7.2x+135-5.4x=81
Tangohia te 5.4x mai i ngā taha e rua.
1.8x+135=81
Pahekotia te 7.2x me -5.4x, ka 1.8x.
1.8x=81-135
Tangohia te 135 mai i ngā taha e rua.
1.8x=-54
Tangohia te 135 i te 81, ka -54.
x=\frac{-54}{1.8}
Whakawehea ngā taha e rua ki te 1.8.
x=\frac{-540}{18}
Whakarohaina te \frac{-54}{1.8} mā te whakarea i te taurunga me te tauraro ki te 10.
x=-30
Whakawehea te -540 ki te 18, kia riro ko -30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}