Aromātai
0.046592
Tauwehe
\frac{7 \cdot 13 \cdot 2 ^ {3}}{5 ^ {6}} = 0.046592
Tohaina
Kua tāruatia ki te papatopenga
0.0327+0.01436+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Whakareatia te 0.4 ki te 0.0359, ka 0.01436.
0.04706+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Tāpirihia te 0.0327 ki te 0.01436, ka 0.04706.
0.04706+\frac{0.4\left(-0.6\right)\times 0.0039}{2}
Tangohia te 1 i te 0.4, ka -0.6.
0.04706+\frac{-0.24\times 0.0039}{2}
Whakareatia te 0.4 ki te -0.6, ka -0.24.
0.04706+\frac{-0.000936}{2}
Whakareatia te -0.24 ki te 0.0039, ka -0.000936.
0.04706+\frac{-936}{2000000}
Whakarohaina te \frac{-0.000936}{2} mā te whakarea i te taurunga me te tauraro ki te 1000000.
0.04706-\frac{117}{250000}
Whakahekea te hautanga \frac{-936}{2000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{2353}{50000}-\frac{117}{250000}
Me tahuri ki tau ā-ira 0.04706 ki te hautau \frac{4706}{100000}. Whakahekea te hautanga \frac{4706}{100000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{11765}{250000}-\frac{117}{250000}
Ko te maha noa iti rawa atu o 50000 me 250000 ko 250000. Me tahuri \frac{2353}{50000} me \frac{117}{250000} ki te hautau me te tautūnga 250000.
\frac{11765-117}{250000}
Tā te mea he rite te tauraro o \frac{11765}{250000} me \frac{117}{250000}, me tango rāua mā te tango i ō raua taurunga.
\frac{11648}{250000}
Tangohia te 117 i te 11765, ka 11648.
\frac{728}{15625}
Whakahekea te hautanga \frac{11648}{250000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}