Aromātai
0.016592
Tauwehe
\frac{17 \cdot 61}{2 ^ {2} \cdot 5 ^ {6}} = 0.016592
Tohaina
Kua tāruatia ki te papatopenga
0.0027+0.01436+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Whakareatia te 0.4 ki te 0.0359, ka 0.01436.
0.01706+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Tāpirihia te 0.0027 ki te 0.01436, ka 0.01706.
0.01706+\frac{0.4\left(-0.6\right)\times 0.0039}{2}
Tangohia te 1 i te 0.4, ka -0.6.
0.01706+\frac{-0.24\times 0.0039}{2}
Whakareatia te 0.4 ki te -0.6, ka -0.24.
0.01706+\frac{-0.000936}{2}
Whakareatia te -0.24 ki te 0.0039, ka -0.000936.
0.01706+\frac{-936}{2000000}
Whakarohaina te \frac{-0.000936}{2} mā te whakarea i te taurunga me te tauraro ki te 1000000.
0.01706-\frac{117}{250000}
Whakahekea te hautanga \frac{-936}{2000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{853}{50000}-\frac{117}{250000}
Me tahuri ki tau ā-ira 0.01706 ki te hautau \frac{1706}{100000}. Whakahekea te hautanga \frac{1706}{100000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{4265}{250000}-\frac{117}{250000}
Ko te maha noa iti rawa atu o 50000 me 250000 ko 250000. Me tahuri \frac{853}{50000} me \frac{117}{250000} ki te hautau me te tautūnga 250000.
\frac{4265-117}{250000}
Tā te mea he rite te tauraro o \frac{4265}{250000} me \frac{117}{250000}, me tango rāua mā te tango i ō raua taurunga.
\frac{4148}{250000}
Tangohia te 117 i te 4265, ka 4148.
\frac{1037}{62500}
Whakahekea te hautanga \frac{4148}{250000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}