Whakaoti mō x
x=200\sqrt{673}-5000\approx 188.448708429
x=-200\sqrt{673}-5000\approx -10188.448708429
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.0001x^{2}+x-192=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 0.0001\left(-192\right)}}{2\times 0.0001}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.0001 mō a, 1 mō b, me -192 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 0.0001\left(-192\right)}}{2\times 0.0001}
Pūrua 1.
x=\frac{-1±\sqrt{1-0.0004\left(-192\right)}}{2\times 0.0001}
Whakareatia -4 ki te 0.0001.
x=\frac{-1±\sqrt{1+0.0768}}{2\times 0.0001}
Whakareatia -0.0004 ki te -192.
x=\frac{-1±\sqrt{1.0768}}{2\times 0.0001}
Tāpiri 1 ki te 0.0768.
x=\frac{-1±\frac{\sqrt{673}}{25}}{2\times 0.0001}
Tuhia te pūtakerua o te 1.0768.
x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002}
Whakareatia 2 ki te 0.0001.
x=\frac{\frac{\sqrt{673}}{25}-1}{0.0002}
Nā, me whakaoti te whārite x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002} ina he tāpiri te ±. Tāpiri -1 ki te \frac{\sqrt{673}}{25}.
x=200\sqrt{673}-5000
Whakawehe -1+\frac{\sqrt{673}}{25} ki te 0.0002 mā te whakarea -1+\frac{\sqrt{673}}{25} ki te tau huripoki o 0.0002.
x=\frac{-\frac{\sqrt{673}}{25}-1}{0.0002}
Nā, me whakaoti te whārite x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002} ina he tango te ±. Tango \frac{\sqrt{673}}{25} mai i -1.
x=-200\sqrt{673}-5000
Whakawehe -1-\frac{\sqrt{673}}{25} ki te 0.0002 mā te whakarea -1-\frac{\sqrt{673}}{25} ki te tau huripoki o 0.0002.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
Kua oti te whārite te whakatau.
0.0001x^{2}+x-192=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
0.0001x^{2}+x-192-\left(-192\right)=-\left(-192\right)
Me tāpiri 192 ki ngā taha e rua o te whārite.
0.0001x^{2}+x=-\left(-192\right)
Mā te tango i te -192 i a ia ake anō ka toe ko te 0.
0.0001x^{2}+x=192
Tango -192 mai i 0.
\frac{0.0001x^{2}+x}{0.0001}=\frac{192}{0.0001}
Me whakarea ngā taha e rua ki te 10000.
x^{2}+\frac{1}{0.0001}x=\frac{192}{0.0001}
Mā te whakawehe ki te 0.0001 ka wetekia te whakareanga ki te 0.0001.
x^{2}+10000x=\frac{192}{0.0001}
Whakawehe 1 ki te 0.0001 mā te whakarea 1 ki te tau huripoki o 0.0001.
x^{2}+10000x=1920000
Whakawehe 192 ki te 0.0001 mā te whakarea 192 ki te tau huripoki o 0.0001.
x^{2}+10000x+5000^{2}=1920000+5000^{2}
Whakawehea te 10000, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5000. Nā, tāpiria te pūrua o te 5000 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10000x+25000000=1920000+25000000
Pūrua 5000.
x^{2}+10000x+25000000=26920000
Tāpiri 1920000 ki te 25000000.
\left(x+5000\right)^{2}=26920000
Tauwehea x^{2}+10000x+25000000. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5000\right)^{2}}=\sqrt{26920000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5000=200\sqrt{673} x+5000=-200\sqrt{673}
Whakarūnātia.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
Me tango 5000 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}