Whakaoti mō x
x=\frac{2\sqrt{2}}{3}-1\approx -0.057190958
x=-\frac{2\sqrt{2}}{3}-1\approx -1.942809042
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=9\left(x^{2}+2x+1\right)-8
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
0=9x^{2}+18x+9-8
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x^{2}+2x+1.
0=9x^{2}+18x+1
Tangohia te 8 i te 9, ka 1.
9x^{2}+18x+1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-18±\sqrt{18^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 18 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 9}}{2\times 9}
Pūrua 18.
x=\frac{-18±\sqrt{324-36}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-18±\sqrt{288}}{2\times 9}
Tāpiri 324 ki te -36.
x=\frac{-18±12\sqrt{2}}{2\times 9}
Tuhia te pūtakerua o te 288.
x=\frac{-18±12\sqrt{2}}{18}
Whakareatia 2 ki te 9.
x=\frac{12\sqrt{2}-18}{18}
Nā, me whakaoti te whārite x=\frac{-18±12\sqrt{2}}{18} ina he tāpiri te ±. Tāpiri -18 ki te 12\sqrt{2}.
x=\frac{2\sqrt{2}}{3}-1
Whakawehe -18+12\sqrt{2} ki te 18.
x=\frac{-12\sqrt{2}-18}{18}
Nā, me whakaoti te whārite x=\frac{-18±12\sqrt{2}}{18} ina he tango te ±. Tango 12\sqrt{2} mai i -18.
x=-\frac{2\sqrt{2}}{3}-1
Whakawehe -18-12\sqrt{2} ki te 18.
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
Kua oti te whārite te whakatau.
0=9\left(x^{2}+2x+1\right)-8
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
0=9x^{2}+18x+9-8
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x^{2}+2x+1.
0=9x^{2}+18x+1
Tangohia te 8 i te 9, ka 1.
9x^{2}+18x+1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9x^{2}+18x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}+18x}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{18}{9}x=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+2x=-\frac{1}{9}
Whakawehe 18 ki te 9.
x^{2}+2x+1^{2}=-\frac{1}{9}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-\frac{1}{9}+1
Pūrua 1.
x^{2}+2x+1=\frac{8}{9}
Tāpiri -\frac{1}{9} ki te 1.
\left(x+1\right)^{2}=\frac{8}{9}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{8}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{2\sqrt{2}}{3} x+1=-\frac{2\sqrt{2}}{3}
Whakarūnātia.
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}