Whakaoti mō x
x=\frac{200\sqrt{49033}}{49033}\approx 0.903203814
x=-\frac{200\sqrt{49033}}{49033}\approx -0.903203814
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=4-0-0.5\times 9.8066x^{2}
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=4-0.5\times 9.8066x^{2}
Tangohia te 0 i te 4, ka 4.
0=4-4.9033x^{2}
Whakareatia te 0.5 ki te 9.8066, ka 4.9033.
4-4.9033x^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4.9033x^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-4}{-4.9033}
Whakawehea ngā taha e rua ki te -4.9033.
x^{2}=\frac{-40000}{-49033}
Whakarohaina te \frac{-4}{-4.9033} mā te whakarea i te taurunga me te tauraro ki te 10000.
x^{2}=\frac{40000}{49033}
Ka taea te hautanga \frac{-40000}{-49033} te whakamāmā ki te \frac{40000}{49033} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{200\sqrt{49033}}{49033} x=-\frac{200\sqrt{49033}}{49033}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
0=4-0-0.5\times 9.8066x^{2}
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=4-0.5\times 9.8066x^{2}
Tangohia te 0 i te 4, ka 4.
0=4-4.9033x^{2}
Whakareatia te 0.5 ki te 9.8066, ka 4.9033.
4-4.9033x^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4.9033x^{2}+4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4.9033\right)\times 4}}{2\left(-4.9033\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4.9033 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4.9033\right)\times 4}}{2\left(-4.9033\right)}
Pūrua 0.
x=\frac{0±\sqrt{19.6132\times 4}}{2\left(-4.9033\right)}
Whakareatia -4 ki te -4.9033.
x=\frac{0±\sqrt{78.4528}}{2\left(-4.9033\right)}
Whakareatia 19.6132 ki te 4.
x=\frac{0±\frac{\sqrt{49033}}{25}}{2\left(-4.9033\right)}
Tuhia te pūtakerua o te 78.4528.
x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066}
Whakareatia 2 ki te -4.9033.
x=-\frac{200\sqrt{49033}}{49033}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066} ina he tāpiri te ±.
x=\frac{200\sqrt{49033}}{49033}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066} ina he tango te ±.
x=-\frac{200\sqrt{49033}}{49033} x=\frac{200\sqrt{49033}}{49033}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}