Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{3}-5x+2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
±\frac{2}{3},±2,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 2, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}+3x-2=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-5x+2 ki te x-1, kia riro ko 3x^{2}+3x-2. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 3 mō te b, me te -2 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{33}}{6}
Mahia ngā tātaitai.
x=-\frac{\sqrt{33}}{6}-\frac{1}{2} x=\frac{\sqrt{33}}{6}-\frac{1}{2}
Whakaotia te whārite 3x^{2}+3x-2=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-\frac{\sqrt{33}}{6}-\frac{1}{2} x=\frac{\sqrt{33}}{6}-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.