Whakaoti mō x
x=3
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=2\left(x-1\right)^{2}-8
Whakareatia te x-1 ki te x-1, ka \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-2x+1.
0=2x^{2}-4x-6
Tangohia te 8 i te 2, ka -6.
2x^{2}-4x-6=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x-3=0
Whakawehea ngā taha e rua ki te 2.
a+b=-2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(x-3\right)
Tuhia anō te x^{2}-2x-3 hei \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Whakatauwehea atu x i te x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+1=0.
0=2\left(x-1\right)^{2}-8
Whakareatia te x-1 ki te x-1, ka \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-2x+1.
0=2x^{2}-4x-6
Tangohia te 8 i te 2, ka -6.
2x^{2}-4x-6=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
Tāpiri 16 ki te 48.
x=\frac{-\left(-4\right)±8}{2\times 2}
Tuhia te pūtakerua o te 64.
x=\frac{4±8}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±8}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{4±8}{4} ina he tāpiri te ±. Tāpiri 4 ki te 8.
x=3
Whakawehe 12 ki te 4.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{4±8}{4} ina he tango te ±. Tango 8 mai i 4.
x=-1
Whakawehe -4 ki te 4.
x=3 x=-1
Kua oti te whārite te whakatau.
0=2\left(x-1\right)^{2}-8
Whakareatia te x-1 ki te x-1, ka \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-2x+1.
0=2x^{2}-4x-6
Tangohia te 8 i te 2, ka -6.
2x^{2}-4x-6=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}-4x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=\frac{6}{2}
Whakawehe -4 ki te 2.
x^{2}-2x=3
Whakawehe 6 ki te 2.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}