Whakaoti mō x
x=37.5
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.75x-0.02x^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\left(0.75-0.02x\right)=0
Tauwehea te x.
x=0 x=\frac{75}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 0.75-\frac{x}{50}=0.
0.75x-0.02x^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-0.02x^{2}+0.75x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-0.75±\sqrt{0.75^{2}}}{2\left(-0.02\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -0.02 mō a, 0.75 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.75±\frac{3}{4}}{2\left(-0.02\right)}
Tuhia te pūtakerua o te 0.75^{2}.
x=\frac{-0.75±\frac{3}{4}}{-0.04}
Whakareatia 2 ki te -0.02.
x=\frac{0}{-0.04}
Nā, me whakaoti te whārite x=\frac{-0.75±\frac{3}{4}}{-0.04} ina he tāpiri te ±. Tāpiri -0.75 ki te \frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -0.04 mā te whakarea 0 ki te tau huripoki o -0.04.
x=-\frac{\frac{3}{2}}{-0.04}
Nā, me whakaoti te whārite x=\frac{-0.75±\frac{3}{4}}{-0.04} ina he tango te ±. Tango \frac{3}{4} mai i -0.75 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{75}{2}
Whakawehe -\frac{3}{2} ki te -0.04 mā te whakarea -\frac{3}{2} ki te tau huripoki o -0.04.
x=0 x=\frac{75}{2}
Kua oti te whārite te whakatau.
0.75x-0.02x^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-0.02x^{2}+0.75x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-0.02x^{2}+0.75x}{-0.02}=\frac{0}{-0.02}
Me whakarea ngā taha e rua ki te -50.
x^{2}+\frac{0.75}{-0.02}x=\frac{0}{-0.02}
Mā te whakawehe ki te -0.02 ka wetekia te whakareanga ki te -0.02.
x^{2}-37.5x=\frac{0}{-0.02}
Whakawehe 0.75 ki te -0.02 mā te whakarea 0.75 ki te tau huripoki o -0.02.
x^{2}-37.5x=0
Whakawehe 0 ki te -0.02 mā te whakarea 0 ki te tau huripoki o -0.02.
x^{2}-37.5x+\left(-18.75\right)^{2}=\left(-18.75\right)^{2}
Whakawehea te -37.5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -18.75. Nā, tāpiria te pūrua o te -18.75 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-37.5x+351.5625=351.5625
Pūruatia -18.75 mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-18.75\right)^{2}=351.5625
Tauwehea x^{2}-37.5x+351.5625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-18.75\right)^{2}}=\sqrt{351.5625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-18.75=\frac{75}{4} x-18.75=-\frac{75}{4}
Whakarūnātia.
x=\frac{75}{2} x=0
Me tāpiri 18.75 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}