Whakaoti mō x
x = \frac{\sqrt{737} + 17}{32} \approx 1.379616998
x=\frac{17-\sqrt{737}}{32}\approx -0.317116998
Graph
Tohaina
Kua tāruatia ki te papatopenga
-16x^{2}+17x+7=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-17±\sqrt{17^{2}-4\left(-16\right)\times 7}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 17 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-16\right)\times 7}}{2\left(-16\right)}
Pūrua 17.
x=\frac{-17±\sqrt{289+64\times 7}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
x=\frac{-17±\sqrt{289+448}}{2\left(-16\right)}
Whakareatia 64 ki te 7.
x=\frac{-17±\sqrt{737}}{2\left(-16\right)}
Tāpiri 289 ki te 448.
x=\frac{-17±\sqrt{737}}{-32}
Whakareatia 2 ki te -16.
x=\frac{\sqrt{737}-17}{-32}
Nā, me whakaoti te whārite x=\frac{-17±\sqrt{737}}{-32} ina he tāpiri te ±. Tāpiri -17 ki te \sqrt{737}.
x=\frac{17-\sqrt{737}}{32}
Whakawehe -17+\sqrt{737} ki te -32.
x=\frac{-\sqrt{737}-17}{-32}
Nā, me whakaoti te whārite x=\frac{-17±\sqrt{737}}{-32} ina he tango te ±. Tango \sqrt{737} mai i -17.
x=\frac{\sqrt{737}+17}{32}
Whakawehe -17-\sqrt{737} ki te -32.
x=\frac{17-\sqrt{737}}{32} x=\frac{\sqrt{737}+17}{32}
Kua oti te whārite te whakatau.
-16x^{2}+17x+7=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-16x^{2}+17x=-7
Tangohia te 7 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-16x^{2}+17x}{-16}=-\frac{7}{-16}
Whakawehea ngā taha e rua ki te -16.
x^{2}+\frac{17}{-16}x=-\frac{7}{-16}
Mā te whakawehe ki te -16 ka wetekia te whakareanga ki te -16.
x^{2}-\frac{17}{16}x=-\frac{7}{-16}
Whakawehe 17 ki te -16.
x^{2}-\frac{17}{16}x=\frac{7}{16}
Whakawehe -7 ki te -16.
x^{2}-\frac{17}{16}x+\left(-\frac{17}{32}\right)^{2}=\frac{7}{16}+\left(-\frac{17}{32}\right)^{2}
Whakawehea te -\frac{17}{16}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{32}. Nā, tāpiria te pūrua o te -\frac{17}{32} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{17}{16}x+\frac{289}{1024}=\frac{7}{16}+\frac{289}{1024}
Pūruatia -\frac{17}{32} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{17}{16}x+\frac{289}{1024}=\frac{737}{1024}
Tāpiri \frac{7}{16} ki te \frac{289}{1024} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{17}{32}\right)^{2}=\frac{737}{1024}
Tauwehea x^{2}-\frac{17}{16}x+\frac{289}{1024}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{32}\right)^{2}}=\sqrt{\frac{737}{1024}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{32}=\frac{\sqrt{737}}{32} x-\frac{17}{32}=-\frac{\sqrt{737}}{32}
Whakarūnātia.
x=\frac{\sqrt{737}+17}{32} x=\frac{17-\sqrt{737}}{32}
Me tāpiri \frac{17}{32} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}