Whakaoti mō x
x=\sqrt{5}-5\approx -2.763932023
x=-\sqrt{5}-5\approx -7.236067977
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
0= \frac{ 1 }{ 5 } { \left(x+5 \right) }^{ 2 } -1
Tohaina
Kua tāruatia ki te papatopenga
0=\frac{1}{5}\left(x^{2}+10x+25\right)-1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
0=\frac{1}{5}x^{2}+2x+5-1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te x^{2}+10x+25.
0=\frac{1}{5}x^{2}+2x+4
Tangohia te 1 i te 5, ka 4.
\frac{1}{5}x^{2}+2x+4=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{5}\times 4}}{2\times \frac{1}{5}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{5} mō a, 2 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{1}{5}\times 4}}{2\times \frac{1}{5}}
Pūrua 2.
x=\frac{-2±\sqrt{4-\frac{4}{5}\times 4}}{2\times \frac{1}{5}}
Whakareatia -4 ki te \frac{1}{5}.
x=\frac{-2±\sqrt{4-\frac{16}{5}}}{2\times \frac{1}{5}}
Whakareatia -\frac{4}{5} ki te 4.
x=\frac{-2±\sqrt{\frac{4}{5}}}{2\times \frac{1}{5}}
Tāpiri 4 ki te -\frac{16}{5}.
x=\frac{-2±\frac{2\sqrt{5}}{5}}{2\times \frac{1}{5}}
Tuhia te pūtakerua o te \frac{4}{5}.
x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}}
Whakareatia 2 ki te \frac{1}{5}.
x=\frac{\frac{2\sqrt{5}}{5}-2}{\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}} ina he tāpiri te ±. Tāpiri -2 ki te \frac{2\sqrt{5}}{5}.
x=\sqrt{5}-5
Whakawehe -2+\frac{2\sqrt{5}}{5} ki te \frac{2}{5} mā te whakarea -2+\frac{2\sqrt{5}}{5} ki te tau huripoki o \frac{2}{5}.
x=\frac{-\frac{2\sqrt{5}}{5}-2}{\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{-2±\frac{2\sqrt{5}}{5}}{\frac{2}{5}} ina he tango te ±. Tango \frac{2\sqrt{5}}{5} mai i -2.
x=-\sqrt{5}-5
Whakawehe -2-\frac{2\sqrt{5}}{5} ki te \frac{2}{5} mā te whakarea -2-\frac{2\sqrt{5}}{5} ki te tau huripoki o \frac{2}{5}.
x=\sqrt{5}-5 x=-\sqrt{5}-5
Kua oti te whārite te whakatau.
0=\frac{1}{5}\left(x^{2}+10x+25\right)-1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
0=\frac{1}{5}x^{2}+2x+5-1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te x^{2}+10x+25.
0=\frac{1}{5}x^{2}+2x+4
Tangohia te 1 i te 5, ka 4.
\frac{1}{5}x^{2}+2x+4=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{5}x^{2}+2x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{\frac{1}{5}x^{2}+2x}{\frac{1}{5}}=-\frac{4}{\frac{1}{5}}
Me whakarea ngā taha e rua ki te 5.
x^{2}+\frac{2}{\frac{1}{5}}x=-\frac{4}{\frac{1}{5}}
Mā te whakawehe ki te \frac{1}{5} ka wetekia te whakareanga ki te \frac{1}{5}.
x^{2}+10x=-\frac{4}{\frac{1}{5}}
Whakawehe 2 ki te \frac{1}{5} mā te whakarea 2 ki te tau huripoki o \frac{1}{5}.
x^{2}+10x=-20
Whakawehe -4 ki te \frac{1}{5} mā te whakarea -4 ki te tau huripoki o \frac{1}{5}.
x^{2}+10x+5^{2}=-20+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=-20+25
Pūrua 5.
x^{2}+10x+25=5
Tāpiri -20 ki te 25.
\left(x+5\right)^{2}=5
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=\sqrt{5} x+5=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-5 x=-\sqrt{5}-5
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}