Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
0 ( 6 ^ { 2 } - 2 \cdot 9 ) : ( 18 - 4 \cdot 5 ) \cdot 100
Tohaina
Kua tāruatia ki te papatopenga
\frac{0\left(36-2\times 9\right)}{18-4\times 5}\times 100
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{0\left(36-18\right)}{18-4\times 5}\times 100
Whakareatia te 2 ki te 9, ka 18.
\frac{0\times 18}{18-4\times 5}\times 100
Tangohia te 18 i te 36, ka 18.
\frac{0}{18-4\times 5}\times 100
Whakareatia te 0 ki te 18, ka 0.
\frac{0}{18-20}\times 100
Whakareatia te 4 ki te 5, ka 20.
\frac{0}{-2}\times 100
Tangohia te 20 i te 18, ka -2.
0\times 100
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0
Whakareatia te 0 ki te 100, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}