Whakaoti mō y
y=14
y=0
Graph
Pātaitai
Polynomial
0 = y ^ { 2 } - 14 y
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-14y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y\left(y-14\right)=0
Tauwehea te y.
y=0 y=14
Hei kimi otinga whārite, me whakaoti te y=0 me te y-14=0.
y^{2}-14y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -14 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-14\right)±14}{2}
Tuhia te pūtakerua o te \left(-14\right)^{2}.
y=\frac{14±14}{2}
Ko te tauaro o -14 ko 14.
y=\frac{28}{2}
Nā, me whakaoti te whārite y=\frac{14±14}{2} ina he tāpiri te ±. Tāpiri 14 ki te 14.
y=14
Whakawehe 28 ki te 2.
y=\frac{0}{2}
Nā, me whakaoti te whārite y=\frac{14±14}{2} ina he tango te ±. Tango 14 mai i 14.
y=0
Whakawehe 0 ki te 2.
y=14 y=0
Kua oti te whārite te whakatau.
y^{2}-14y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}-14y+\left(-7\right)^{2}=\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-14y+49=49
Pūrua -7.
\left(y-7\right)^{2}=49
Tauwehea y^{2}-14y+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-7\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-7=7 y-7=-7
Whakarūnātia.
y=14 y=0
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}