Whakaoti mō y (complex solution)
y=\sqrt{23}-3\approx 1.795831523
y=-\left(\sqrt{23}+3\right)\approx -7.795831523
Whakaoti mō y
y=\sqrt{23}-3\approx 1.795831523
y=-\sqrt{23}-3\approx -7.795831523
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}+6y-14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
Pūrua 6.
y=\frac{-6±\sqrt{36+56}}{2}
Whakareatia -4 ki te -14.
y=\frac{-6±\sqrt{92}}{2}
Tāpiri 36 ki te 56.
y=\frac{-6±2\sqrt{23}}{2}
Tuhia te pūtakerua o te 92.
y=\frac{2\sqrt{23}-6}{2}
Nā, me whakaoti te whārite y=\frac{-6±2\sqrt{23}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{23}.
y=\sqrt{23}-3
Whakawehe -6+2\sqrt{23} ki te 2.
y=\frac{-2\sqrt{23}-6}{2}
Nā, me whakaoti te whārite y=\frac{-6±2\sqrt{23}}{2} ina he tango te ±. Tango 2\sqrt{23} mai i -6.
y=-\sqrt{23}-3
Whakawehe -6-2\sqrt{23} ki te 2.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Kua oti te whārite te whakatau.
y^{2}+6y-14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}+6y=14
Me tāpiri te 14 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}+6y+3^{2}=14+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+6y+9=14+9
Pūrua 3.
y^{2}+6y+9=23
Tāpiri 14 ki te 9.
\left(y+3\right)^{2}=23
Tauwehea y^{2}+6y+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+3=\sqrt{23} y+3=-\sqrt{23}
Whakarūnātia.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Me tango 3 mai i ngā taha e rua o te whārite.
y^{2}+6y-14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
Pūrua 6.
y=\frac{-6±\sqrt{36+56}}{2}
Whakareatia -4 ki te -14.
y=\frac{-6±\sqrt{92}}{2}
Tāpiri 36 ki te 56.
y=\frac{-6±2\sqrt{23}}{2}
Tuhia te pūtakerua o te 92.
y=\frac{2\sqrt{23}-6}{2}
Nā, me whakaoti te whārite y=\frac{-6±2\sqrt{23}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{23}.
y=\sqrt{23}-3
Whakawehe -6+2\sqrt{23} ki te 2.
y=\frac{-2\sqrt{23}-6}{2}
Nā, me whakaoti te whārite y=\frac{-6±2\sqrt{23}}{2} ina he tango te ±. Tango 2\sqrt{23} mai i -6.
y=-\sqrt{23}-3
Whakawehe -6-2\sqrt{23} ki te 2.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Kua oti te whārite te whakatau.
y^{2}+6y-14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}+6y=14
Me tāpiri te 14 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}+6y+3^{2}=14+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+6y+9=14+9
Pūrua 3.
y^{2}+6y+9=23
Tāpiri 14 ki te 9.
\left(y+3\right)^{2}=23
Tauwehea y^{2}+6y+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+3=\sqrt{23} y+3=-\sqrt{23}
Whakarūnātia.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}