Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}+8x^{2}+21x+18=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
±18,±9,±6,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 18, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+6x+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+8x^{2}+21x+18 ki te x+2, kia riro ko x^{2}+6x+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 9}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 6 mō te b, me te 9 mō te c i te ture pūrua.
x=\frac{-6±0}{2}
Mahia ngā tātaitai.
x=-3
He ōrite ngā whakatau.
x=-2 x=-3
Rārangitia ngā otinga katoa i kitea.