Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+12x-18=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-12±\sqrt{12^{2}-4\left(-18\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-18\right)}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144+72}}{2}
Whakareatia -4 ki te -18.
x=\frac{-12±\sqrt{216}}{2}
Tāpiri 144 ki te 72.
x=\frac{-12±6\sqrt{6}}{2}
Tuhia te pūtakerua o te 216.
x=\frac{6\sqrt{6}-12}{2}
Nā, me whakaoti te whārite x=\frac{-12±6\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 6\sqrt{6}.
x=3\sqrt{6}-6
Whakawehe -12+6\sqrt{6} ki te 2.
x=\frac{-6\sqrt{6}-12}{2}
Nā, me whakaoti te whārite x=\frac{-12±6\sqrt{6}}{2} ina he tango te ±. Tango 6\sqrt{6} mai i -12.
x=-3\sqrt{6}-6
Whakawehe -12-6\sqrt{6} ki te 2.
x=3\sqrt{6}-6 x=-3\sqrt{6}-6
Kua oti te whārite te whakatau.
x^{2}+12x-18=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+12x=18
Me tāpiri te 18 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+12x+6^{2}=18+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=18+36
Pūrua 6.
x^{2}+12x+36=54
Tāpiri 18 ki te 36.
\left(x+6\right)^{2}=54
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{54}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=3\sqrt{6} x+6=-3\sqrt{6}
Whakarūnātia.
x=3\sqrt{6}-6 x=-3\sqrt{6}-6
Me tango 6 mai i ngā taha e rua o te whārite.