Whakaoti mō x
x=\frac{3\sqrt{17}-11}{2}\approx 0.684658438
x=\frac{-3\sqrt{17}-11}{2}\approx -11.684658438
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+11x-8=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-11±\sqrt{11^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 11 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-8\right)}}{2}
Pūrua 11.
x=\frac{-11±\sqrt{121+32}}{2}
Whakareatia -4 ki te -8.
x=\frac{-11±\sqrt{153}}{2}
Tāpiri 121 ki te 32.
x=\frac{-11±3\sqrt{17}}{2}
Tuhia te pūtakerua o te 153.
x=\frac{3\sqrt{17}-11}{2}
Nā, me whakaoti te whārite x=\frac{-11±3\sqrt{17}}{2} ina he tāpiri te ±. Tāpiri -11 ki te 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{2}
Nā, me whakaoti te whārite x=\frac{-11±3\sqrt{17}}{2} ina he tango te ±. Tango 3\sqrt{17} mai i -11.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Kua oti te whārite te whakatau.
x^{2}+11x-8=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+11x=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=8+\left(\frac{11}{2}\right)^{2}
Whakawehea te 11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{2}. Nā, tāpiria te pūrua o te \frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+11x+\frac{121}{4}=8+\frac{121}{4}
Pūruatia \frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+11x+\frac{121}{4}=\frac{153}{4}
Tāpiri 8 ki te \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{153}{4}
Tauwehea x^{2}+11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{2}=\frac{3\sqrt{17}}{2} x+\frac{11}{2}=-\frac{3\sqrt{17}}{2}
Whakarūnātia.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}