Whakaoti mō x (complex solution)
x=\frac{\sqrt{15}i}{12}+\frac{1}{4}\approx 0.25+0.322748612i
x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}\approx 0.25-0.322748612i
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-3x+1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6}}{2\times 6}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-24}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-3\right)±\sqrt{-15}}{2\times 6}
Tāpiri 9 ki te -24.
x=\frac{-\left(-3\right)±\sqrt{15}i}{2\times 6}
Tuhia te pūtakerua o te -15.
x=\frac{3±\sqrt{15}i}{2\times 6}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{15}i}{12}
Whakareatia 2 ki te 6.
x=\frac{3+\sqrt{15}i}{12}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{15}i}{12} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{15}.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4}
Whakawehe 3+i\sqrt{15} ki te 12.
x=\frac{-\sqrt{15}i+3}{12}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{15}i}{12} ina he tango te ±. Tango i\sqrt{15} mai i 3.
x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
Whakawehe 3-i\sqrt{15} ki te 12.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4} x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
Kua oti te whārite te whakatau.
6x^{2}-3x+1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x^{2}-3x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{6x^{2}-3x}{6}=-\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{3}{6}\right)x=-\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{2}x=-\frac{1}{6}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{6}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{6}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{5}{48}
Tāpiri -\frac{1}{6} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=-\frac{5}{48}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{5}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{15}i}{12} x-\frac{1}{4}=-\frac{\sqrt{15}i}{12}
Whakarūnātia.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4} x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}