Whakaoti mō x
x=-\frac{3}{4}=-0.75
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-x-3=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=-1 ab=4\left(-3\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(4x^{2}-4x\right)+\left(3x-3\right)
Tuhia anō te 4x^{2}-x-3 hei \left(4x^{2}-4x\right)+\left(3x-3\right).
4x\left(x-1\right)+3\left(x-1\right)
Tauwehea te 4x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-1\right)\left(4x+3\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 4x+3=0.
4x^{2}-x-3=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
Whakareatia -16 ki te -3.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
Tāpiri 1 ki te 48.
x=\frac{-\left(-1\right)±7}{2\times 4}
Tuhia te pūtakerua o te 49.
x=\frac{1±7}{2\times 4}
Ko te tauaro o -1 ko 1.
x=\frac{1±7}{8}
Whakareatia 2 ki te 4.
x=\frac{8}{8}
Nā, me whakaoti te whārite x=\frac{1±7}{8} ina he tāpiri te ±. Tāpiri 1 ki te 7.
x=1
Whakawehe 8 ki te 8.
x=-\frac{6}{8}
Nā, me whakaoti te whārite x=\frac{1±7}{8} ina he tango te ±. Tango 7 mai i 1.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{-6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{3}{4}
Kua oti te whārite te whakatau.
4x^{2}-x-3=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}-x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{4x^{2}-x}{4}=\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{1}{4}x=\frac{3}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{8}\right)^{2}
Whakawehea te -\frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{8}. Nā, tāpiria te pūrua o te -\frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
Pūruatia -\frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{49}{64}
Tāpiri \frac{3}{4} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{8}\right)^{2}=\frac{49}{64}
Tauwehea x^{2}-\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{8}=\frac{7}{8} x-\frac{1}{8}=-\frac{7}{8}
Whakarūnātia.
x=1 x=-\frac{3}{4}
Me tāpiri \frac{1}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}