Whakaoti mō x (complex solution)
x=\frac{9+\sqrt{143}i}{8}\approx 1.125+1.494782593i
x=\frac{-\sqrt{143}i+9}{8}\approx 1.125-1.494782593i
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-9x+14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 14}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -9 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 14}}{2\times 4}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-16\times 14}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-9\right)±\sqrt{81-224}}{2\times 4}
Whakareatia -16 ki te 14.
x=\frac{-\left(-9\right)±\sqrt{-143}}{2\times 4}
Tāpiri 81 ki te -224.
x=\frac{-\left(-9\right)±\sqrt{143}i}{2\times 4}
Tuhia te pūtakerua o te -143.
x=\frac{9±\sqrt{143}i}{2\times 4}
Ko te tauaro o -9 ko 9.
x=\frac{9±\sqrt{143}i}{8}
Whakareatia 2 ki te 4.
x=\frac{9+\sqrt{143}i}{8}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{143}i}{8} ina he tāpiri te ±. Tāpiri 9 ki te i\sqrt{143}.
x=\frac{-\sqrt{143}i+9}{8}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{143}i}{8} ina he tango te ±. Tango i\sqrt{143} mai i 9.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
Kua oti te whārite te whakatau.
4x^{2}-9x+14=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x^{2}-9x=-14
Tangohia te 14 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-9x}{4}=-\frac{14}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{9}{4}x=-\frac{14}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{9}{4}x=-\frac{7}{2}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=-\frac{7}{2}+\left(-\frac{9}{8}\right)^{2}
Whakawehea te -\frac{9}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{8}. Nā, tāpiria te pūrua o te -\frac{9}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{7}{2}+\frac{81}{64}
Pūruatia -\frac{9}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{143}{64}
Tāpiri -\frac{7}{2} ki te \frac{81}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{8}\right)^{2}=-\frac{143}{64}
Tauwehea x^{2}-\frac{9}{4}x+\frac{81}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{-\frac{143}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{8}=\frac{\sqrt{143}i}{8} x-\frac{9}{8}=-\frac{\sqrt{143}i}{8}
Whakarūnātia.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
Me tāpiri \frac{9}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}