Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30x^{2}+11x-30=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=11 ab=30\left(-30\right)=-900
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 30x^{2}+ax+bx-30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,900 -2,450 -3,300 -4,225 -5,180 -6,150 -9,100 -10,90 -12,75 -15,60 -18,50 -20,45 -25,36 -30,30
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -900.
-1+900=899 -2+450=448 -3+300=297 -4+225=221 -5+180=175 -6+150=144 -9+100=91 -10+90=80 -12+75=63 -15+60=45 -18+50=32 -20+45=25 -25+36=11 -30+30=0
Tātaihia te tapeke mō ia takirua.
a=-25 b=36
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(30x^{2}-25x\right)+\left(36x-30\right)
Tuhia anō te 30x^{2}+11x-30 hei \left(30x^{2}-25x\right)+\left(36x-30\right).
5x\left(6x-5\right)+6\left(6x-5\right)
Tauwehea te 5x i te tuatahi me te 6 i te rōpū tuarua.
\left(6x-5\right)\left(5x+6\right)
Whakatauwehea atu te kīanga pātahi 6x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{6} x=-\frac{6}{5}
Hei kimi otinga whārite, me whakaoti te 6x-5=0 me te 5x+6=0.
30x^{2}+11x-30=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-11±\sqrt{11^{2}-4\times 30\left(-30\right)}}{2\times 30}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 30 mō a, 11 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 30\left(-30\right)}}{2\times 30}
Pūrua 11.
x=\frac{-11±\sqrt{121-120\left(-30\right)}}{2\times 30}
Whakareatia -4 ki te 30.
x=\frac{-11±\sqrt{121+3600}}{2\times 30}
Whakareatia -120 ki te -30.
x=\frac{-11±\sqrt{3721}}{2\times 30}
Tāpiri 121 ki te 3600.
x=\frac{-11±61}{2\times 30}
Tuhia te pūtakerua o te 3721.
x=\frac{-11±61}{60}
Whakareatia 2 ki te 30.
x=\frac{50}{60}
Nā, me whakaoti te whārite x=\frac{-11±61}{60} ina he tāpiri te ±. Tāpiri -11 ki te 61.
x=\frac{5}{6}
Whakahekea te hautanga \frac{50}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{72}{60}
Nā, me whakaoti te whārite x=\frac{-11±61}{60} ina he tango te ±. Tango 61 mai i -11.
x=-\frac{6}{5}
Whakahekea te hautanga \frac{-72}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{5}{6} x=-\frac{6}{5}
Kua oti te whārite te whakatau.
30x^{2}+11x-30=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
30x^{2}+11x=30
Me tāpiri te 30 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{30x^{2}+11x}{30}=\frac{30}{30}
Whakawehea ngā taha e rua ki te 30.
x^{2}+\frac{11}{30}x=\frac{30}{30}
Mā te whakawehe ki te 30 ka wetekia te whakareanga ki te 30.
x^{2}+\frac{11}{30}x=1
Whakawehe 30 ki te 30.
x^{2}+\frac{11}{30}x+\left(\frac{11}{60}\right)^{2}=1+\left(\frac{11}{60}\right)^{2}
Whakawehea te \frac{11}{30}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{60}. Nā, tāpiria te pūrua o te \frac{11}{60} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{30}x+\frac{121}{3600}=1+\frac{121}{3600}
Pūruatia \frac{11}{60} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{30}x+\frac{121}{3600}=\frac{3721}{3600}
Tāpiri 1 ki te \frac{121}{3600}.
\left(x+\frac{11}{60}\right)^{2}=\frac{3721}{3600}
Tauwehea x^{2}+\frac{11}{30}x+\frac{121}{3600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{60}\right)^{2}}=\sqrt{\frac{3721}{3600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{60}=\frac{61}{60} x+\frac{11}{60}=-\frac{61}{60}
Whakarūnātia.
x=\frac{5}{6} x=-\frac{6}{5}
Me tango \frac{11}{60} mai i ngā taha e rua o te whārite.