Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

20-p^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-p^{2}=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
p^{2}=\frac{-20}{-1}
Whakawehea ngā taha e rua ki te -1.
p^{2}=20
Ka taea te hautanga \frac{-20}{-1} te whakamāmā ki te 20 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
p=2\sqrt{5} p=-2\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
20-p^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-p^{2}+20=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 20}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\left(-1\right)\times 20}}{2\left(-1\right)}
Pūrua 0.
p=\frac{0±\sqrt{4\times 20}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
p=\frac{0±\sqrt{80}}{2\left(-1\right)}
Whakareatia 4 ki te 20.
p=\frac{0±4\sqrt{5}}{2\left(-1\right)}
Tuhia te pūtakerua o te 80.
p=\frac{0±4\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
p=-2\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±4\sqrt{5}}{-2} ina he tāpiri te ±.
p=2\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±4\sqrt{5}}{-2} ina he tango te ±.
p=-2\sqrt{5} p=2\sqrt{5}
Kua oti te whārite te whakatau.