Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+6x+2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-6±\sqrt{6^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 6 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\times 2}}{2\times 2}
Pūrua 6.
x=\frac{-6±\sqrt{36-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-6±\sqrt{36-16}}{2\times 2}
Whakareatia -8 ki te 2.
x=\frac{-6±\sqrt{20}}{2\times 2}
Tāpiri 36 ki te -16.
x=\frac{-6±2\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 20.
x=\frac{-6±2\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{5}-6}{4}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{5}}{4} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{5}.
x=\frac{\sqrt{5}-3}{2}
Whakawehe -6+2\sqrt{5} ki te 4.
x=\frac{-2\sqrt{5}-6}{4}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{5}}{4} ina he tango te ±. Tango 2\sqrt{5} mai i -6.
x=\frac{-\sqrt{5}-3}{2}
Whakawehe -6-2\sqrt{5} ki te 4.
x=\frac{\sqrt{5}-3}{2} x=\frac{-\sqrt{5}-3}{2}
Kua oti te whārite te whakatau.
2x^{2}+6x+2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+6x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2x^{2}+6x}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{6}{2}x=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+3x=-\frac{2}{2}
Whakawehe 6 ki te 2.
x^{2}+3x=-1
Whakawehe -2 ki te 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-1+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=-1+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{5}{4}
Tāpiri -1 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{5}}{2} x+\frac{3}{2}=-\frac{\sqrt{5}}{2}
Whakarūnātia.
x=\frac{\sqrt{5}-3}{2} x=\frac{-\sqrt{5}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.