Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t\left(105+49t\right)=0
Tauwehea te t.
t=0 t=-\frac{15}{7}
Hei kimi otinga whārite, me whakaoti te t=0 me te 105+49t=0.
105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49t^{2}+105t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-105±\sqrt{105^{2}}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 105 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-105±105}{2\times 49}
Tuhia te pūtakerua o te 105^{2}.
t=\frac{-105±105}{98}
Whakareatia 2 ki te 49.
t=\frac{0}{98}
Nā, me whakaoti te whārite t=\frac{-105±105}{98} ina he tāpiri te ±. Tāpiri -105 ki te 105.
t=0
Whakawehe 0 ki te 98.
t=-\frac{210}{98}
Nā, me whakaoti te whārite t=\frac{-105±105}{98} ina he tango te ±. Tango 105 mai i -105.
t=-\frac{15}{7}
Whakahekea te hautanga \frac{-210}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
t=0 t=-\frac{15}{7}
Kua oti te whārite te whakatau.
105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49t^{2}+105t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{49t^{2}+105t}{49}=\frac{0}{49}
Whakawehea ngā taha e rua ki te 49.
t^{2}+\frac{105}{49}t=\frac{0}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
t^{2}+\frac{15}{7}t=\frac{0}{49}
Whakahekea te hautanga \frac{105}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
t^{2}+\frac{15}{7}t=0
Whakawehe 0 ki te 49.
t^{2}+\frac{15}{7}t+\left(\frac{15}{14}\right)^{2}=\left(\frac{15}{14}\right)^{2}
Whakawehea te \frac{15}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{14}. Nā, tāpiria te pūrua o te \frac{15}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{15}{7}t+\frac{225}{196}=\frac{225}{196}
Pūruatia \frac{15}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t+\frac{15}{14}\right)^{2}=\frac{225}{196}
Tauwehea t^{2}+\frac{15}{7}t+\frac{225}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{15}{14}\right)^{2}}=\sqrt{\frac{225}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{15}{14}=\frac{15}{14} t+\frac{15}{14}=-\frac{15}{14}
Whakarūnātia.
t=0 t=-\frac{15}{7}
Me tango \frac{15}{14} mai i ngā taha e rua o te whārite.