Whakaoti mō t
t = -\frac{15}{7} = -2\frac{1}{7} \approx -2.142857143
t=0
Tohaina
Kua tāruatia ki te papatopenga
105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t\left(105+49t\right)=0
Tauwehea te t.
t=0 t=-\frac{15}{7}
Hei kimi otinga whārite, me whakaoti te t=0 me te 105+49t=0.
105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49t^{2}+105t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-105±\sqrt{105^{2}}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 105 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-105±105}{2\times 49}
Tuhia te pūtakerua o te 105^{2}.
t=\frac{-105±105}{98}
Whakareatia 2 ki te 49.
t=\frac{0}{98}
Nā, me whakaoti te whārite t=\frac{-105±105}{98} ina he tāpiri te ±. Tāpiri -105 ki te 105.
t=0
Whakawehe 0 ki te 98.
t=-\frac{210}{98}
Nā, me whakaoti te whārite t=\frac{-105±105}{98} ina he tango te ±. Tango 105 mai i -105.
t=-\frac{15}{7}
Whakahekea te hautanga \frac{-210}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
t=0 t=-\frac{15}{7}
Kua oti te whārite te whakatau.
105t+49t^{2}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49t^{2}+105t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{49t^{2}+105t}{49}=\frac{0}{49}
Whakawehea ngā taha e rua ki te 49.
t^{2}+\frac{105}{49}t=\frac{0}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
t^{2}+\frac{15}{7}t=\frac{0}{49}
Whakahekea te hautanga \frac{105}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
t^{2}+\frac{15}{7}t=0
Whakawehe 0 ki te 49.
t^{2}+\frac{15}{7}t+\left(\frac{15}{14}\right)^{2}=\left(\frac{15}{14}\right)^{2}
Whakawehea te \frac{15}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{14}. Nā, tāpiria te pūrua o te \frac{15}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{15}{7}t+\frac{225}{196}=\frac{225}{196}
Pūruatia \frac{15}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t+\frac{15}{14}\right)^{2}=\frac{225}{196}
Tauwehea t^{2}+\frac{15}{7}t+\frac{225}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{15}{14}\right)^{2}}=\sqrt{\frac{225}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{15}{14}=\frac{15}{14} t+\frac{15}{14}=-\frac{15}{14}
Whakarūnātia.
t=0 t=-\frac{15}{7}
Me tango \frac{15}{14} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}