Whakaoti mō h
h=8
Tohaina
Kua tāruatia ki te papatopenga
0=\left(h-8\right)^{2}
Whakawehea ngā taha e rua ki te 0.16. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0=h^{2}-16h+64
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(h-8\right)^{2}.
h^{2}-16h+64=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=-16 ab=64
Hei whakaoti i te whārite, whakatauwehea te h^{2}-16h+64 mā te whakamahi i te tātai h^{2}+\left(a+b\right)h+ab=\left(h+a\right)\left(h+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-64 -2,-32 -4,-16 -8,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Tātaihia te tapeke mō ia takirua.
a=-8 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(h-8\right)\left(h-8\right)
Me tuhi anō te kīanga whakatauwehe \left(h+a\right)\left(h+b\right) mā ngā uara i tātaihia.
\left(h-8\right)^{2}
Tuhia anōtia hei pūrua huarua.
h=8
Hei kimi i te otinga whārite, whakaotia te h-8=0.
0=\left(h-8\right)^{2}
Whakawehea ngā taha e rua ki te 0.16. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0=h^{2}-16h+64
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(h-8\right)^{2}.
h^{2}-16h+64=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=-16 ab=1\times 64=64
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei h^{2}+ah+bh+64. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-64 -2,-32 -4,-16 -8,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Tātaihia te tapeke mō ia takirua.
a=-8 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(h^{2}-8h\right)+\left(-8h+64\right)
Tuhia anō te h^{2}-16h+64 hei \left(h^{2}-8h\right)+\left(-8h+64\right).
h\left(h-8\right)-8\left(h-8\right)
Tauwehea te h i te tuatahi me te -8 i te rōpū tuarua.
\left(h-8\right)\left(h-8\right)
Whakatauwehea atu te kīanga pātahi h-8 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(h-8\right)^{2}
Tuhia anōtia hei pūrua huarua.
h=8
Hei kimi i te otinga whārite, whakaotia te h-8=0.
0=\left(h-8\right)^{2}
Whakawehea ngā taha e rua ki te 0.16. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0=h^{2}-16h+64
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(h-8\right)^{2}.
h^{2}-16h+64=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 64}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -16 mō b, me 64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-16\right)±\sqrt{256-4\times 64}}{2}
Pūrua -16.
h=\frac{-\left(-16\right)±\sqrt{256-256}}{2}
Whakareatia -4 ki te 64.
h=\frac{-\left(-16\right)±\sqrt{0}}{2}
Tāpiri 256 ki te -256.
h=-\frac{-16}{2}
Tuhia te pūtakerua o te 0.
h=\frac{16}{2}
Ko te tauaro o -16 ko 16.
h=8
Whakawehe 16 ki te 2.
0=\left(h-8\right)^{2}
Whakawehea ngā taha e rua ki te 0.16. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0=h^{2}-16h+64
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(h-8\right)^{2}.
h^{2}-16h+64=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(h-8\right)^{2}=0
Tauwehea h^{2}-16h+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-8\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h-8=0 h-8=0
Whakarūnātia.
h=8 h=8
Me tāpiri 8 ki ngā taha e rua o te whārite.
h=8
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}