Whakaoti mō t
t=-7
t=10
Tohaina
Kua tāruatia ki te papatopenga
-5250+75t^{2}-225t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-70+t^{2}-3t=0
Whakawehea ngā taha e rua ki te 75.
t^{2}-3t-70=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=1\left(-70\right)=-70
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-70. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-70 2,-35 5,-14 7,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Tātaihia te tapeke mō ia takirua.
a=-10 b=7
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(t^{2}-10t\right)+\left(7t-70\right)
Tuhia anō te t^{2}-3t-70 hei \left(t^{2}-10t\right)+\left(7t-70\right).
t\left(t-10\right)+7\left(t-10\right)
Tauwehea te t i te tuatahi me te 7 i te rōpū tuarua.
\left(t-10\right)\left(t+7\right)
Whakatauwehea atu te kīanga pātahi t-10 mā te whakamahi i te āhuatanga tātai tohatoha.
t=10 t=-7
Hei kimi otinga whārite, me whakaoti te t-10=0 me te t+7=0.
-5250+75t^{2}-225t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
75t^{2}-225t-5250=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-225\right)±\sqrt{\left(-225\right)^{2}-4\times 75\left(-5250\right)}}{2\times 75}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 75 mō a, -225 mō b, me -5250 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-225\right)±\sqrt{50625-4\times 75\left(-5250\right)}}{2\times 75}
Pūrua -225.
t=\frac{-\left(-225\right)±\sqrt{50625-300\left(-5250\right)}}{2\times 75}
Whakareatia -4 ki te 75.
t=\frac{-\left(-225\right)±\sqrt{50625+1575000}}{2\times 75}
Whakareatia -300 ki te -5250.
t=\frac{-\left(-225\right)±\sqrt{1625625}}{2\times 75}
Tāpiri 50625 ki te 1575000.
t=\frac{-\left(-225\right)±1275}{2\times 75}
Tuhia te pūtakerua o te 1625625.
t=\frac{225±1275}{2\times 75}
Ko te tauaro o -225 ko 225.
t=\frac{225±1275}{150}
Whakareatia 2 ki te 75.
t=\frac{1500}{150}
Nā, me whakaoti te whārite t=\frac{225±1275}{150} ina he tāpiri te ±. Tāpiri 225 ki te 1275.
t=10
Whakawehe 1500 ki te 150.
t=-\frac{1050}{150}
Nā, me whakaoti te whārite t=\frac{225±1275}{150} ina he tango te ±. Tango 1275 mai i 225.
t=-7
Whakawehe -1050 ki te 150.
t=10 t=-7
Kua oti te whārite te whakatau.
-5250+75t^{2}-225t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
75t^{2}-225t=5250
Me tāpiri te 5250 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{75t^{2}-225t}{75}=\frac{5250}{75}
Whakawehea ngā taha e rua ki te 75.
t^{2}+\left(-\frac{225}{75}\right)t=\frac{5250}{75}
Mā te whakawehe ki te 75 ka wetekia te whakareanga ki te 75.
t^{2}-3t=\frac{5250}{75}
Whakawehe -225 ki te 75.
t^{2}-3t=70
Whakawehe 5250 ki te 75.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=70+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-3t+\frac{9}{4}=70+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-3t+\frac{9}{4}=\frac{289}{4}
Tāpiri 70 ki te \frac{9}{4}.
\left(t-\frac{3}{2}\right)^{2}=\frac{289}{4}
Tauwehea t^{2}-3t+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{3}{2}=\frac{17}{2} t-\frac{3}{2}=-\frac{17}{2}
Whakarūnātia.
t=10 t=-7
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}