Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5t^{2}+40t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t\left(-5t+40\right)=0
Tauwehea te t.
t=0 t=8
Hei kimi otinga whārite, me whakaoti te t=0 me te -5t+40=0.
-5t^{2}+40t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t=\frac{-40±\sqrt{40^{2}}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 40 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-40±40}{2\left(-5\right)}
Tuhia te pūtakerua o te 40^{2}.
t=\frac{-40±40}{-10}
Whakareatia 2 ki te -5.
t=\frac{0}{-10}
Nā, me whakaoti te whārite t=\frac{-40±40}{-10} ina he tāpiri te ±. Tāpiri -40 ki te 40.
t=0
Whakawehe 0 ki te -10.
t=-\frac{80}{-10}
Nā, me whakaoti te whārite t=\frac{-40±40}{-10} ina he tango te ±. Tango 40 mai i -40.
t=8
Whakawehe -80 ki te -10.
t=0 t=8
Kua oti te whārite te whakatau.
-5t^{2}+40t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-5t^{2}+40t}{-5}=\frac{0}{-5}
Whakawehea ngā taha e rua ki te -5.
t^{2}+\frac{40}{-5}t=\frac{0}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
t^{2}-8t=\frac{0}{-5}
Whakawehe 40 ki te -5.
t^{2}-8t=0
Whakawehe 0 ki te -5.
t^{2}-8t+\left(-4\right)^{2}=\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-8t+16=16
Pūrua -4.
\left(t-4\right)^{2}=16
Tauwehea t^{2}-8t+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-4=4 t-4=-4
Whakarūnātia.
t=8 t=0
Me tāpiri 4 ki ngā taha e rua o te whārite.