Whakaoti mō t
t=1
t=2
Tohaina
Kua tāruatia ki te papatopenga
-16t^{2}+48t-32=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-t^{2}+3t-2=0
Whakawehea ngā taha e rua ki te 16.
a+b=3 ab=-\left(-2\right)=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -t^{2}+at+bt-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-t^{2}+2t\right)+\left(t-2\right)
Tuhia anō te -t^{2}+3t-2 hei \left(-t^{2}+2t\right)+\left(t-2\right).
-t\left(t-2\right)+t-2
Whakatauwehea atu -t i te -t^{2}+2t.
\left(t-2\right)\left(-t+1\right)
Whakatauwehea atu te kīanga pātahi t-2 mā te whakamahi i te āhuatanga tātai tohatoha.
t=2 t=1
Hei kimi otinga whārite, me whakaoti te t-2=0 me te -t+1=0.
-16t^{2}+48t-32=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t=\frac{-48±\sqrt{48^{2}-4\left(-16\right)\left(-32\right)}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 48 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-48±\sqrt{2304-4\left(-16\right)\left(-32\right)}}{2\left(-16\right)}
Pūrua 48.
t=\frac{-48±\sqrt{2304+64\left(-32\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
t=\frac{-48±\sqrt{2304-2048}}{2\left(-16\right)}
Whakareatia 64 ki te -32.
t=\frac{-48±\sqrt{256}}{2\left(-16\right)}
Tāpiri 2304 ki te -2048.
t=\frac{-48±16}{2\left(-16\right)}
Tuhia te pūtakerua o te 256.
t=\frac{-48±16}{-32}
Whakareatia 2 ki te -16.
t=-\frac{32}{-32}
Nā, me whakaoti te whārite t=\frac{-48±16}{-32} ina he tāpiri te ±. Tāpiri -48 ki te 16.
t=1
Whakawehe -32 ki te -32.
t=-\frac{64}{-32}
Nā, me whakaoti te whārite t=\frac{-48±16}{-32} ina he tango te ±. Tango 16 mai i -48.
t=2
Whakawehe -64 ki te -32.
t=1 t=2
Kua oti te whārite te whakatau.
-16t^{2}+48t-32=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-16t^{2}+48t=32
Me tāpiri te 32 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-16t^{2}+48t}{-16}=\frac{32}{-16}
Whakawehea ngā taha e rua ki te -16.
t^{2}+\frac{48}{-16}t=\frac{32}{-16}
Mā te whakawehe ki te -16 ka wetekia te whakareanga ki te -16.
t^{2}-3t=\frac{32}{-16}
Whakawehe 48 ki te -16.
t^{2}-3t=-2
Whakawehe 32 ki te -16.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-3t+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-3t+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(t-\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea t^{2}-3t+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{3}{2}=\frac{1}{2} t-\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
t=2 t=1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}