Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\frac{6}{25}x^{2}+\frac{12}{5}x=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\left(-\frac{6}{25}x+\frac{12}{5}\right)=0
Tauwehea te x.
x=0 x=10
Hei kimi otinga whārite, me whakaoti te x=0 me te -\frac{6x}{25}+\frac{12}{5}=0.
-\frac{6}{25}x^{2}+\frac{12}{5}x=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\frac{12}{5}±\sqrt{\left(\frac{12}{5}\right)^{2}}}{2\left(-\frac{6}{25}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{6}{25} mō a, \frac{12}{5} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{12}{5}±\frac{12}{5}}{2\left(-\frac{6}{25}\right)}
Tuhia te pūtakerua o te \left(\frac{12}{5}\right)^{2}.
x=\frac{-\frac{12}{5}±\frac{12}{5}}{-\frac{12}{25}}
Whakareatia 2 ki te -\frac{6}{25}.
x=\frac{0}{-\frac{12}{25}}
Nā, me whakaoti te whārite x=\frac{-\frac{12}{5}±\frac{12}{5}}{-\frac{12}{25}} ina he tāpiri te ±. Tāpiri -\frac{12}{5} ki te \frac{12}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -\frac{12}{25} mā te whakarea 0 ki te tau huripoki o -\frac{12}{25}.
x=-\frac{\frac{24}{5}}{-\frac{12}{25}}
Nā, me whakaoti te whārite x=\frac{-\frac{12}{5}±\frac{12}{5}}{-\frac{12}{25}} ina he tango te ±. Tango \frac{12}{5} mai i -\frac{12}{5} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=10
Whakawehe -\frac{24}{5} ki te -\frac{12}{25} mā te whakarea -\frac{24}{5} ki te tau huripoki o -\frac{12}{25}.
x=0 x=10
Kua oti te whārite te whakatau.
-\frac{6}{25}x^{2}+\frac{12}{5}x=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-\frac{6}{25}x^{2}+\frac{12}{5}x}{-\frac{6}{25}}=\frac{0}{-\frac{6}{25}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{6}{25}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{\frac{12}{5}}{-\frac{6}{25}}x=\frac{0}{-\frac{6}{25}}
Mā te whakawehe ki te -\frac{6}{25} ka wetekia te whakareanga ki te -\frac{6}{25}.
x^{2}-10x=\frac{0}{-\frac{6}{25}}
Whakawehe \frac{12}{5} ki te -\frac{6}{25} mā te whakarea \frac{12}{5} ki te tau huripoki o -\frac{6}{25}.
x^{2}-10x=0
Whakawehe 0 ki te -\frac{6}{25} mā te whakarea 0 ki te tau huripoki o -\frac{6}{25}.
x^{2}-10x+\left(-5\right)^{2}=\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=25
Pūrua -5.
\left(x-5\right)^{2}=25
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=5 x-5=-5
Whakarūnātia.
x=10 x=0
Me tāpiri 5 ki ngā taha e rua o te whārite.