Whakaoti mō x
x=-2
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{4} mō a, \frac{3}{2} mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{4}\right)}
Whakareatia -4 ki te -\frac{1}{4}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{4}\right)}
Tāpiri \frac{9}{4} ki te 4.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{4}\right)}
Tuhia te pūtakerua o te \frac{25}{4}.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}}
Whakareatia 2 ki te -\frac{1}{4}.
x=\frac{1}{-\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} ina he tāpiri te ±. Tāpiri -\frac{3}{2} ki te \frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2
Whakawehe 1 ki te -\frac{1}{2} mā te whakarea 1 ki te tau huripoki o -\frac{1}{2}.
x=-\frac{4}{-\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} ina he tango te ±. Tango \frac{5}{2} mai i -\frac{3}{2} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=8
Whakawehe -4 ki te -\frac{1}{2} mā te whakarea -4 ki te tau huripoki o -\frac{1}{2}.
x=-2 x=8
Kua oti te whārite te whakatau.
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{4}x^{2}+\frac{3}{2}x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-\frac{1}{4}x^{2}+\frac{3}{2}x}{-\frac{1}{4}}=-\frac{4}{-\frac{1}{4}}
Me whakarea ngā taha e rua ki te -4.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{4}}x=-\frac{4}{-\frac{1}{4}}
Mā te whakawehe ki te -\frac{1}{4} ka wetekia te whakareanga ki te -\frac{1}{4}.
x^{2}-6x=-\frac{4}{-\frac{1}{4}}
Whakawehe \frac{3}{2} ki te -\frac{1}{4} mā te whakarea \frac{3}{2} ki te tau huripoki o -\frac{1}{4}.
x^{2}-6x=16
Whakawehe -4 ki te -\frac{1}{4} mā te whakarea -4 ki te tau huripoki o -\frac{1}{4}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=16+9
Pūrua -3.
x^{2}-6x+9=25
Tāpiri 16 ki te 9.
\left(x-3\right)^{2}=25
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=5 x-3=-5
Whakarūnātia.
x=8 x=-2
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}