Whakaoti mō x
x=\sqrt{6}+5\approx 7.449489743
x=5-\sqrt{6}\approx 2.550510257
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=x^{2}-10x+25-6
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
0=x^{2}-10x+19
Tangohia te 6 i te 25, ka 19.
x^{2}-10x+19=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 19}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 19}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-76}}{2}
Whakareatia -4 ki te 19.
x=\frac{-\left(-10\right)±\sqrt{24}}{2}
Tāpiri 100 ki te -76.
x=\frac{-\left(-10\right)±2\sqrt{6}}{2}
Tuhia te pūtakerua o te 24.
x=\frac{10±2\sqrt{6}}{2}
Ko te tauaro o -10 ko 10.
x=\frac{2\sqrt{6}+10}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{6}.
x=\sqrt{6}+5
Whakawehe 10+2\sqrt{6} ki te 2.
x=\frac{10-2\sqrt{6}}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{6}}{2} ina he tango te ±. Tango 2\sqrt{6} mai i 10.
x=5-\sqrt{6}
Whakawehe 10-2\sqrt{6} ki te 2.
x=\sqrt{6}+5 x=5-\sqrt{6}
Kua oti te whārite te whakatau.
0=x^{2}-10x+25-6
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
0=x^{2}-10x+19
Tangohia te 6 i te 25, ka 19.
x^{2}-10x+19=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-10x=-19
Tangohia te 19 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-10x+\left(-5\right)^{2}=-19+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-19+25
Pūrua -5.
x^{2}-10x+25=6
Tāpiri -19 ki te 25.
\left(x-5\right)^{2}=6
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\sqrt{6} x-5=-\sqrt{6}
Whakarūnātia.
x=\sqrt{6}+5 x=5-\sqrt{6}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}